Journal of Geriatric Oncology xxx (xxxx) xxx

Contents lists available at ScienceDirect

Journal of Geriatric Oncology

JGO-01065; No. of pages: 10; 4C:

Clinical outcome of older adults with acute myeloid Leukemia: An analysis of a large tertiary referral Center over two decades

Jana Ihlow^{a,b,*}, Sophia Gross^a, Nina Rosa Neuendorff^a, Leonie Busack^a, Alma Herneth^a, Anju Singh^a, Michaela Schwarz^a, Anne Flörcken^{a,d}, Ioannis Anagnostopoulos^b, Seval Türkmen^c, Thomas Burmeister^{a,d}, Igor Wolfgang Blau^a, Lars Bullinger^{a,d}, Jörg Westermann^{a,d}

^a Department of Hematology, Oncology and Tumor Immunology, Charité – Universitätsmedizin Berlin, Campus Virchow-Clinic, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany

^b Institute of Pathology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany ^c Department of Medical Genetics and Human Genetics, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany

^d Labor Berlin Charité Vivantes GmbH, Berlin, Germany

ARTICLE INFO

Article history: Received 20 December 2019 Received in revised form 21 September 2020 Accepted 3 November 2020 Available online xxxx

Keywords: Acute myeloid leukemia Older patients with AML Outcome Prognostic factors

ABSTRACT

Objective: In older adults with acute myeloid leukemia (AML), the overall outcome is still dismal and long-term data on survival are scarce, particularly outside of clinical trials. Here, we assess characteristics, prognostic factors and long-term survival in patients ≥60 years who were treated for AML at our center over the past 17 years. Methods: 590 older adults with newly diagnosed AML were characterized according to Eastern Cooperative Oncology Group (ECOG) score, Charlson comorbidity index (CCI), European LeukemiaNet (ELN) risk, type of therapy, serum ferritin (SF) and further baseline characteristics. Survival analysis was performed accordingly. Results: Median age was 68 years and most patients were in good general condition. Median follow-up was 55.8 months. Of all patients, 66% received intensive chemotherapy (IC) +/- allogeneic hematopoietic stem cell transplantation (allo-HSCT). The remaining cohort received palliative chemotherapy (PC, 26%) or best supportive care only (BSC, 8%). Enrollment rate for interventional clinical trials was 26%. 5-year overall survival (OS) and relapse-free survival (RFS) were 18% (median 12.5 months) and 11,5% (median 10.0 months). Long-term survival was independently influenced by ECOG score, ELN risk group, baseline SF, previous myocardial infarction, and choice of therapy, but not consistently by age or CCI. Considering therapeutic subgroups, the contribution of particular parameters in predicting OS was most compelling in IC patients, but less consistent with PC or BSC. Conclusion: Our results provide thorough insights into prognostication within therapeutic subgroups and emphasize the need for more detailed prognostic algorithms and routine geriatric assessment in the treatment of older adults

with AML.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The incidence of AML is increasing with age. Median age at primary diagnosis of AML is 69 years [1]. In older adults with AML, the overall clinical outcome is particularly dismal due to a higher frequency of adverse patient- and disease-related factors as compared to younger patients. Furthermore, age itself is generally accepted as an adverse prognostic factor. This makes older patients one of the most vulnerable subgroups in treatment for AML [2–5]. Over the past decades, long-term-survival in patients with AML has improved in general and the characterization of more distinct genetic subgroups has led to several personalized therapies. However, achieving long-term survival remains particularly challenging in the subgroup of older adults [6,7]. Older

patients with AML are often not eligible for interventional clinical trials or allo-HSCT and are an underrepresented patient cohort in large secondary or tertiary admission centers such as university hospitals [8]. Besides a few population-based analyses, data on long-term survival and patient- and disease related risk factors in older adults with AML outside of clinical trials are still scarce [2,9–11]. In addition to age, performance status, comorbidity burden, cytogenetic/molecular features and subtype of AML, further parameters such as geriatric assessment and early treatment response seem to be potential variables for a more accurate prediction of clinical outcome [12–19].

Unfortunately, an ideal diagnostic tool that enables determination of individual chances and risks of intensive versus non-intensive therapy and prediction of response to a particular targeted therapy is still elusive.

Please cite this article as: J. Ihlow, S. Gross, N.R. Neuendorff, et al., Clinical outcome of older adults with acute myeloid Leukemia: An analysis of a large tertiary referr..., J Geriatr Oncol, https://doi.org/10.1016/j.jgo.2020.11.001

^{*} Corresponding author at: Charité University Medicine Berlin, Department of Hematology, Oncology and Tumorimmunology, Augustenburger Platz 1, 13353 Berlin, Germany. *E-mail address:* jana.ihlow@charite.de (J. Ihlow).

J. Ihlow, S. Gross, N.R. Neuendorff et al.

The aim of this study was to provide a detailed analysis of clinical characteristics, prognostic factors and long-term survival in different therapeutic subgroups within a large cohort of older adults that had been treated for AML at our clinic over the past two decades. In the course of this analysis, particular focus was set on the influence of age and CCI on long-term survival, since their independent prognostic impact is an ongoing matter of debate [14,17–21]. Furthermore, the prognostic value of baseline SF that has previously been described by our group and others in younger patients with AML [15,22–24] was evaluated in this cohort of older adults treated for AML.

2. Patients and Methods

2.1. Patients

631 patients aged \geq 60 years with newly diagnosed AML were treated at Charité University Medical Center Berlin, Campus Virchow-Clinic, within the past two decades (1st January 2000 through 31st December 2017). Diagnosis of AML was confirmed by cytologic, flow cytometric, histopathologic, cytogenetic, and molecular evaluation of bone marrow aspirates and/or biopsies. 41 patients were excluded for the following reasons: acute promyelocytic leukemia (n = 11), mixed phenotype acute leukemia/acute undifferentiated leukemia (n = 28), and incomplete data set (n = 2). Finally, 590 patients were eligible for the analysis. The study was performed in accordance with local ethical guidelines (institutional ethics committee approval: EA4/231/19) and the declaration of Helsinki.

Measurement of initial performance status was based on the ECOG performance score [25]. Comorbidity burden was specified using the

Table 1
Baseline characteristics of 590 older patients treated for AML

CCI [26]. Remission status and molecular/cytogenetic risk groups were classified according to the 2010 ELN criteria, since many of the molecular data that are necessary for the 2017 ELN risk classification were not available for patients analyzed in the period 2000–2017 [27,28]. As previously suggested in younger patients [22,29,30], a cutoff value of 1000 µg/l was used for the assessment of the prognostic impact of SF. AML subtypes were defined according to the WHO classification of 2016: sAML was defined as AML with myelodysplasia-related changes with either previous myelodysplastic syndrome (MDS), myeloproliferative neoplasia (MPN) or MDS/MPN overlap syndrome [31]. Therapy-related AML (t-AML) was defined as AML following cytotoxic therapy. For the survival analysis, the entire cohort was subdivided according to ECOG score, CCI, ELN risk group, subtype of AML, treatment modality, age, and SF.

2.2. Statistical Analysis

Data collection and statistical analysis were performed using IBM SPSS Statistics[®], Version 23 (IBM[®] 2015, Armonk, NY, USA). Kruskal-Wallis-H-test, Mann-Whitney-*U* test and chi-square test were applied for the analysis of baseline characteristics. In multiple comparisons, Kruskal-Wallis-H-test and chi-square test were followed by Bonferroni adjustment and post-hoc testing. Overall survival (OS), relapse-free survival (RFS) and event-free survival (EFS) were analyzed using the Kaplan-Meier method. To specify median follow-up, the reverse Kaplan-Meier method was applied [32]. A logrank-test followed by a stratified univariate Cox regression was used to determine significant survival factors. In multiple comparisons, logrank-test was followed by the Benjamini Hochberg Procedure [33]. In order to calculate a hazard ratio (HR), certain variables were transformed into categorical

Characteristics	Entire cohort ($n = 590$)	Intensive CHT ($n = 390$)	Palliative CHT ($n = 154$)	BSC $(n = 46)$	p*
Gender, n [%]					0.150
Female	255 [43.2]	159 [40.8]	71 [46.1]	25 [54.3]	
Male	335 [56.8]	231 [59.2]	83 [53.9]	21 [45.7]	
Median age, y [IQR]	68 [63-74]	66 [62–70]	74.5 [71–79]	71.0 [66–78]	<0.001
- Age 60–65 y, n [%]	215 [36.4]	193 [49.5]	13 [8.4]	9 [19.6]	<0.001
- Age 66–70 y, n [%]	159 [26.9]	123 [31.5]	23 [14.9]	13 [28.3]	<0.001
- Age 71–75 y, n [%]	112 [19.0]	55 [14.1]	49 [31.8]	8 [17.4]	<0.001
- Age > 75 y, n [%]	104 [17.6]	19 [4.9]	69 [44.8]	16 [34.8]	<0.001
- Age > 80 y, n [%]	45 [7.6]	5 [1.3]	33 [21.4]	7 [15.2]	<0.001
Median ECOG score [IQR]	1 [0-1]	1 [0–1]	1 [1–2]	2 [1–2.5]	<0.001
Median CCI [IQR]	1 [0–2]	0 [0–2]	2 [1–3]	2 [1–3]	<0.001
Median blast count (BM), % [IQR]	70 [30-100]	60 [21-80]	60 [20-100]	60.0 [21.0-80.0]	0.190
Median WBC count, x 10 ⁹ /l [IQR]	9.1 [2.1-42.3]	6.4 [1.9-38.9]	13 [3.7–50.1]	7.9 [1.5–32.1]	0.058
Median hemoglobin, g/dl [IQR]	9.2 [8.1–10.3]	9.3 [8.2–10.6]	9.0 [8.1–9.9]	8.9 [8.1-10.5]	0.187
Median platelet count, x 10 ⁹ /l [IQR]	55.5 [32-103]	56 [34–105]	53.5 [32.3-102.8]	45.5 [17.3–93.5]	0.062
Median SF, µg/l [IQR]	974 [509.6-1797.0]	884 [538–1430]	1130.6 [448–1896]	1908 [781-6009]	0.126
Severe infection at initial diagnosis	98 [16.6]	68 [17.4]	20 [13.0]	10 [21.7]	0.381
Cytogenetic risk (ELN 2010), n [%]					0.127
- Favorable	49 [8.3]	41 [10.5]	7 [4.5]	1 [2.2]	
- Intermediate	269 [45.6]	198 [30.8]	58 [37.7]	13 [28.3]	
- Adverse	159 [26.9]	104 [26.7]	45 [29.2]	10 [21.7]	
- Unknown	114 [19.3]	47 [12.1]	16 [10.4]	22 [47.8]	
Type of AML, n [%]					0.001
- De-novo AML	281 [47.6]	209 [53.6]	52 [33.8]	20 [43.5]	<0.001
- Secondary AML	229 [38.8]	136 [34.9]	77 [50.0]	16 [34.8]	0.003
- Previous MDS	172 [75.1]	112 [82.4]	49 [63.6]	11 [68.8]	0.086
 Previous MPN 	33 [14.4]	15 [11.0]	15 [19.5]	3 [18.7]	
 Previous MDS/MPN overlap 	24 [10.5]	9 [6.6]	13 [16.9]	2 [12.5]	
- Therapy-related AML	72 [12.2]	43 [11.0]	21 [13.6]	8 [17.4]	0.180
- Unknown	8 [1.4]	2 [0.5]	4 [2.6]	2 [4.3]	0.134
Interventional clinical trial, n [%]	155 [26.3]	140 [35.9]	15 [9.7]	0 [0]	< 0.001

Note: *All groups were compared to each other and Bonferroni-adjustment was applied subsequently. Significant differences between groups and significance levels are highlighted in bold letters.

Abbreviations: number of observations (n), chemotherapy (CHT), best supportive care (BSC), interquartile range (IQR), Eastern cooperative oncology group score (ECOG), Charlson Comorbidity Index (CCI), bone marrow (BM), serum ferritin (SF), peripheral white blood cell count (WBC), hemoglobin (Hb), c-reactive protein (CRP), myelodysplastic syndrome (MDS), myeloproliferative neoplasm (MPN), European LeukemiaNet (ELN), allogeneic hematologic stem cell transplantation (allo-HSCT).

J. Ihlow, S. Gross, N.R. Neuendorff et al.

Journal of Geriatric Oncology xxx (xxxx) xxx

dichotomous data. Subsequently, the independence of factors with a significant impact on OS was analyzed in a stepwise multivariate Cox proportional hazards model. A p-value of p < 0.05 was considered

statistically significant in two-by-two analyses. In comparisons between three or more subgroups, this level of significance was divided by the respective number of conducted tests (Bonferroni correction).

Table 2

Overall Survival and baseline characteristics in 590 AML patients by type of therapy.

Varial No.	A	Entire cohort Intensive CHT +/- allo-HSCT					Intensive CHT without allo-HSCT				Intensive CHT with allo-HSCT						
Shall	Variable	n	Median	95% CI	р	n	Median	95% CI	р	n	Median	95% CI	р	n	Median	95% CI	р
NIS (m)Sign <t< td=""><td>OS (m)</td><td>590</td><td>12.0</td><td>10.6-13.5</td><td>-</td><td>390</td><td>21.6</td><td>17.1-26.1</td><td>-</td><td>171*</td><td>11.1</td><td>8.5-13.7</td><td>-</td><td>216</td><td>32.7</td><td>25.3-40.2</td><td>-</td></t<>	OS (m)	590	12.0	10.6-13.5	-	390	21.6	17.1-26.1	-	171*	11.1	8.5-13.7	-	216	32.7	25.3-40.2	-
ESA (m) Set (m)	RFS (m)	590	10.5	8.5-12.6	-	343	11.1	8.5-13.4	-	137	8.0	6.2-9.7	-	205	14.8	11.3-18.3	-
Age (0.5) U <thu< td=""><td>EFS (m)</td><td>590</td><td>8.3</td><td>7.1-9.6</td><td>-</td><td>390</td><td>11.9</td><td>10.4-13.5</td><td>-</td><td>171</td><td>7.6</td><td>6.0-9.2</td><td>-</td><td>216</td><td>15.9</td><td>12.9-18.8</td><td>-</td></thu<>	EFS (m)	590	8.3	7.1-9.6	-	390	11.9	10.4-13.5	-	171	7.6	6.0-9.2	-	216	15.9	12.9-18.8	-
bit	Age (OS, m)				<0.001				0.051				0.616				0.834
66-70 years 159 94 73-71-15 73 73 73 73 74 75 <	60–65 years	215	10.6	8.3-13.0		193	12.3	8.6-15.9		58	8.0	5.4-10.7		134	32.4	24.9-40.5	
71-75 years11274755555547414158484-15715155416138411-4275 <th< td=""><td>66-70 years</td><td>159</td><td>9.4</td><td>7.3–11.5</td><td></td><td>123</td><td>12.2</td><td>9.7-14.7</td><td></td><td>53</td><td>14.9</td><td>6.5-23.4</td><td></td><td>69</td><td>31.4</td><td>16.7-46.2</td><td></td></th<>	66-70 years	159	9.4	7.3–11.5		123	12.2	9.7-14.7		53	14.9	6.5-23.4		69	31.4	16.7-46.2	
> > 5 years1043.042.4 × 5.55.55.55.72.0 × 5.57.57.0<	71–75 years	112	7.6	5.5-9.6		55	11.7	9.7-13.8		41	13.5	8.9-18.1		13	35.8	11.3-60.4	
> solversing45281.4-4255.32.0-8.55.32.0-8.55.32.0-8.56.32.0-8.57.107.0	> 75 years	104	3.9	2.4-5.5		19	10.3	4.9–15.7		19	10.3	4.9–15.7		-	-	-	
LECC (G) m)·············0.038ECOC (2271.81.2.41.61620.379-12.88.28.16.71.376.70.00.015.161000.0-15.161000.0-15.161001.31.7770.00.377.77.70.70.777777777777770.70.77770.70.7770.7770.770.770.770.770.70.770.770.70.770.770.70.770.70.770.70.770.70	> 80 years	45	2.8	1.4-4.2		5	5.3	2.0-8.5		5	5.3	2.0-8.5		-	-	-	
ECOC.0 191 11.2 8.8 8.13.6 157 12.4 9.3-13.6 677 13.5 7.0 57.3 18 1.2-3.40 18 1.2-3.40 18 1.2-3.40 18 1.2-3.40 18 1.2-3.40 18 1.2-3.40 18 1.2-3.40 18 1.2-3.40 18 1.2-3.40 18 1.2-3.40 18 1.2-3.40 18 1.1 1 <th1< th=""> <th1< th=""> 1</th1<></th1<>	ECOG (OS, m)				<0.001				<0.001				<0.001				0.348
ECOC1 277 7.0 5.7-8.4 162 103 7.9-1.2.8 82 9.1 6.7-1.5. 79 9.0 5.2 2.4.400 ECOC3 19 13 10-1.5 2 1 3.1 2.1-10 7 6.00 0.0-1.51 7 7 1 1.0 1 1.1	ECOG 0	191	11.2	8.8-13.6		157	12.4	9.3-15.6		67	13.5	7.9–19.1		89	40.6	14.8-66.4	
	ECOG I	237	/.0	5.7-8.4		162	10.3	7.9-12.8		82	9.1	6.7-11.5		/9	30.5	21.2-40.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ECOG 2	10	1.8	1.2-3.4		14	0.I 1.2	2.3-10.0		/	0.0	0.0-15.1		1	10.0	0.0-36.5	
label and back out out <tho t<="" th=""> <</tho>	ECOG 3	19	1.3	1.0-1.5		1	1.5	-		1	1.5	-		1	17.1	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CCL(OS m)	4	0.4	0.0-1.2	<0.001	1	0.1	-	0 102	1	0.1	-	~0.001	-	-	-	0 388
CCC1-5 187 6.7 5.7 9.7 9.7 9.7 7.4 1.0 0.0 6.2 1.0 6.0 6.2 1.0 9.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0 0.0 0.2 0.0<	CCI (03, III)	359	10.4	87_122	<0.001	276	127	105-148	0.102	110	123	94-151	<0.001	163	354	27 9_42 9	0.566
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CCI 2-3	187	67	55-79		97	93	74-112		54	9.0	62-118		43	20.2	107-297	
CC1C -7 7 0.8 0.3 - 1 2 0.9 No. 1 0.9 - No. 1 1.6.4 - No. Subtype (05, m) - - - - - - - - 0.400 - - - 0.620 0.440 7 0.440 7 0.440 7 0.440 7 0.440 7 0.440 7 0.440 7 0.440 7 0.440 7 0.440 7 0.440 7 0.440 7 0.440 7 0.620 7 0.440 7 0.440 7 0.440 7 0.440 7 0.440 7 0.440 7 0.410 7 0.410 7 0.410 7 0.410 7 0.410 7 0.410 7 0.410 7 0.410 7 0.410 7 0.410 7 0.410 7 0.410 7 0.410 7 0.410	CCI 4-5	34	3.0	10-49		14	3.7	0.0-13.5		6	31	0.0-16.5		8	25.1	n r - n r	
CC1 8-1020.80.80.80.80.80.80<	CCI 6-7	7	0.8	0.3-1.3		2	0.9	-		1	0.9	-		1	16.4	_	
Subpyer (05, m) v 0.021 v 0.020 0.440 0.440 72-5 0.062 sAML 229 11.7 9.5-1.82 209 5.6-1.22 43 10.6 6.4-1.48 9 13.2 9.2-1.36 6.4-1.04 72 8.1 72.5-1.5	CCI 8-10	2	0.8	-		-	_	-		-	_	-		-	_	-	
De novo AML SML 281 14.2 9.5-18.9 200 1.3 9.2-13.4 91 13.2 92-17.1 115 39.4 27.2-15.5 5.4-35.7 10 10.2 95.1-16 10 10.2 <	Subtype (OS, m)				0.021				0.620				0.440				0.062
shall22917. 299-13.6 513.613.695-14.6 661.713.090-13.6 177426.0015.093-00.090.00ENVision749555-24.7 1974.810.4 <t< td=""><td>De novo AML</td><td>281</td><td>14.2</td><td>9.5-18.9</td><td></td><td>209</td><td>11.3</td><td>9.2-13.4</td><td></td><td>91</td><td>13.2</td><td>9.2-17.1</td><td></td><td>115</td><td>39.4</td><td>27.2-51.5</td><td></td></t<>	De novo AML	281	14.2	9.5-18.9		209	11.3	9.2-13.4		91	13.2	9.2-17.1		115	39.4	27.2-51.5	
thm thm thm thm thm thm78.96.4-1.4.878.46.4-1.0.46.4-1.0.478.46.4-1.0.478.46.4-1.0.478.46.4-1.0.478.45.37.100.002Favorable thermediate adverse488.212.5-23.81113.810.413.713.713.310.635.710.035.710.00.002Adverse198.212.5-23.710.910.41.61.01.01.41.313.3-18.810.635.710.010.	sAML	229	11.7	9.9-13.6		136	12.0	9.5-14.6		62	11.3	9.0-13.6		74	26.0	15.4-36.5	
ELN risk (05, m)	tAML	72	8.9	5.6-12.2		43	10.6	6.4-14.8		17	8.4	6.4-10.4		26	15.0	9.3-20.6	
	ELN risk (OS, m)				<0.001				<0.001				<0.001				0.002
Intermediate Adverse 159 8 12.5 19.9 14.9 10.7-19.2 90 14.5 10.3-18.8 106 36.5 27.4-45.6 Adverse 159 8.9 10.9-15.9 10.4 7.6 4.9-10.2 41 5.3 2.8-7.8 63 16.4 8.8-24.0 B Median 95% CI p n	Favorable	49	25.5	5.2-45.7		41	14.8	10.4-19.1		13	43.2	13.3-73.0		28	53.5	35.3-71.6	
Adverse 159 8.9 10.9-15.9 10.4 7.5 4.9-10.2 4.1 5.3 2.8-7.8 6.3 16.4 8.8-24.0 B Palliative CHT +/- HMA M Median 95% CI p n 0.42.2 - - - - - - - - - - 0.732 0.732 0.793 0.732 0.793 0.732 0.793 0.793 13 13 0.0 0.0 0.0 0.0 0.0	Intermediate	268	18.2	12.5-23.9		198	14.9	10.7-19.2		90	14.5	10.3-18.8		106	36.5	27.4-45.6	
B Patter HAM 1st-line Constraints Mark Normality Mark Mark Normality Mark Mark Normality Mark Mark Normality Mark	Adverse	159	8.9	10.9–15.9		104	7.6	4.9-10.2		41	5.3	2.8-7.8		63	16.4	8.8-24.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Palliative CHT +/- HMA													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	В	Palli	ative CHT	+/- HMA		HN	IA 1st-line			Oth	er palliativ	ve CHT		BSC	only		
RFS, m 3 4.5 0.8-8.3 - 3 4.5 0.8-8.3 - 0.022 - 0.022 0.023 0.022 0.023 0.022 0.023 0.022 0.023 0.023 <th< td=""><td>B Variable</td><td>Palli n</td><td>ative CHT Median</td><td>+/- HMA 95% CI</td><td>р</td><td>HN n</td><td>IA 1st-line Median</td><td>95% CI</td><td>р</td><td>Oth n</td><td>er palliativ Median</td><td>ve CHT 95% CI</td><td>р</td><td>BSC o</td><td>only Median</td><td>95% CI</td><td>р</td></th<>	B Variable	Palli n	ative CHT Median	+/- HMA 95% CI	р	HN n	IA 1st-line Median	95% CI	р	Oth n	er palliativ Median	ve CHT 95% CI	р	BSC o	only Median	95% CI	р
EFS, m 154 3.9 2.4-5.3 - 58 11.2 6.7-15.6 - 96 2.5 1.8-3.2 - 46 1.3 0.4-2.2 - Age (05, m) 0.039 0.732 0.732 0.732 0.733 <t< td=""><td>B Variable OS, m</td><td>Palli n 154</td><td>ative CHT Median 3.9</td><td>+/- HMA 95% CI 2.4–5.3</td><td>р -</td><td>H№ n 58</td><td>IA 1st-line Median 11.7</td><td>95% CI 7.0–16.4</td><td>р -</td><td>Oth n 96</td><td>er palliativ Median 2.5</td><td>ve CHT 95% CI 1.8–3.2</td><td>p _</td><td>BSC n 46</td><td>only Median 1.3</td><td>95% CI 0.4–2.2</td><td>р -</td></t<>	B Variable OS, m	Palli n 154	ative CHT Median 3.9	+/- HMA 95% CI 2.4–5.3	р -	H№ n 58	IA 1st-line Median 11.7	95% CI 7.0–16.4	р -	Oth n 96	er palliativ Median 2.5	ve CHT 95% CI 1.8–3.2	p _	BSC n 46	only Median 1.3	95% CI 0.4–2.2	р -
Age (05, m)0.3990.7320.7390.7990.7990.7990.7990.7990.7990.7990.7990.7990.7990.7990.7990.7910.7920.7920.7910.7920.7910.7920.7920.7910.7920.7910.7920.7920.7910.7920.7920.7910.7920.7920.7910.7920.7920.7920.7910.7920.7920.7910.7920.7910.7920.7910.7920.7910.7920.7910.7920.7910.7920.7910.7920.7910.7920.7910.7920.7910.7920.791 </td <td>B Variable OS, m RFS, m</td> <td>Palli n 154 3</td> <td>Ative CHT Median 3.9 4.5</td> <td>+/- HMA 95% CI 2.4–5.3 0.8–8.3</td> <td>p _ _</td> <td>HN n 58 3</td> <td>IA 1st-line Median 11.7 4.5</td> <td>95% CI 7.0–16.4 0.8–8.3</td> <td>p _ _</td> <td>Oth n 96 -</td> <td>er palliativ Median 2.5 -</td> <td>ve CHT 95% CI 1.8–3.2 –</td> <td>p _ _</td> <td>BSC 0 n 46</td> <td>only Median 1.3 -</td> <td>95% CI 0.4-2.2 -</td> <td>p _ _</td>	B Variable OS, m RFS, m	Palli n 154 3	Ative CHT Median 3.9 4.5	+/- HMA 95% CI 2.4–5.3 0.8–8.3	p _ _	HN n 58 3	IA 1st-line Median 11.7 4.5	95% CI 7.0–16.4 0.8–8.3	p _ _	Oth n 96 -	er palliativ Median 2.5 -	ve CHT 95% CI 1.8–3.2 –	p _ _	BSC 0 n 46	only Median 1.3 -	95% CI 0.4-2.2 -	p _ _
60-65 years132.52.0-3.091.01.0-2.766-70 years233.00.0-6.065.60.0-37.9171.80.9-2.8131.30.0-2.771-75 years494.71.8-7.6208.11.9-14.4292.60.8-4.380.90.0-4.5> 75 years694.02.1-5.93211.80.7-19.9372.81.1-4.41.61.60.4-2.2> 80 years332.80.8-4.380.90.0-4.50.90.00.4.2> 80 years332.80.8-4.81.21.80.7-19.9372.81.1-4.41.61.60.4-2.2> 80 years308.16.1-10.2121.87.7-19.9372.81.1-4.41.61.60.4-2.2ECOG (0.5)5.44.2-6.7211.77.5-28.0363.91.2-6.7383.30.0-8.0ECOG 2461.61.0-2.1122.01.2-2.9341.30.6-2.1131.30.0-2.6ECOG 383.50.0-7.111.5.7-73.50.0-9.490.60.0-1.8ECOG 410.90.811.20.60.0-1.80.0-2.60.0-1.80.0-2.6ECOG 53.00.0-6.241.70.0-42.4111.30.0-3.61.60.0-3.60.0-3.8	B Variable OS, m RFS, m EFS, m	Palli n 154 3 154	Ative CHT Median 3.9 4.5 3.9	+/- HMA 95% CI 2.4–5.3 0.8–8.3 2.4–5.3	p - - -	HN n 58 3 58	IA 1st-line Median 11.7 4.5 11.2	95% CI 7.0–16.4 0.8–8.3 6.7–15.6	p - -	Oth n 96 - 96	er palliativ Median 2.5 - 2.5	ve CHT 95% CI 1.8–3.2 – 1.8–3.2	p 	BSC 0 n 46 - 46	Median 1.3 - 1.3	95% CI 0.4–2.2 – 0.4–2.2	p - - -
66-70 years233.00.0-6.065.60.0-37.9171.80.9-2.8131.30.0-2.771-75 years694.02.1-5.9208.11.9-14.4292.60.8-4.380.90.0-4.5> 80 years332.80.8-4.81211.8029.9211.10.0-2.172.20.0-6.9ECOG (0S, m)0.001-72.20.0-6.90.4-2.2ECOG 0308.16.1-10.21414.41.9-21.0165.02.9-7.033.30.0-2.6ECOG 1575.44.2-6.72117.87.5-28.0363.91.2-6.7181.60.0-3.6ECOG 2461.61.0-2.1122.01.2-2.9341.30.6-2.1131.30.0-2.6ECOG 383.50.0-7.1115.773.50.0-9.490.60.0-1.8ECOG 410.9-10.920.4CC1 (0S, m)0.0010.93.3462.81.6-4.0231.00.8-1.80.6CC1 2-3665.42.2-862017.61.9-3.3462.81.6-4.0231.00.8-1.8CC1 2-5153.00.0-6.2417.30.0-42.411<	B Variable OS, m RFS, m EFS, m Age (OS, m)	Palli n 154 3 154	Ative CHT Median 3.9 4.5 3.9	+/- HMA 95% CI 2.4–5.3 0.8–8.3 2.4–5.3	p - - - 0.399	HN n 58 3 58	IA 1st-line Median 11.7 4.5 11.2	95% Cl 7.0–16.4 0.8–8.3 6.7–15.6	p - - - 0.732	Oth n 96 - 96	er palliativ Median 2.5 - 2.5	ve CHT 95% CI 1.8–3.2 – 1.8–3.2	p - - - 0.799	BSC 0 n 46 - 46	Median 1.3 - 1.3	95% CI 0.4-2.2 - 0.4-2.2	p - - - 0.425
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B Variable OS, m RFS, m EFS, m Age (OS, m) 60-65 years	Palli n 154 3 154 13	ative CHT Median 3.9 4.5 3.9 2.5	+/- HMA 95% CI 2.4–5.3 0.8–8.3 2.4–5.3 2.0–3.0	p - - 0.399	HM n 58 3 58 -	IA 1st-line Median 11.7 4.5 11.2	95% CI 7.0–16.4 0.8–8.3 6.7–15.6	p - - 0.732	Oth n 96 - 96 13	er palliativ Median 2.5 - 2.5 2.5	ve CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0	p - - 0.799	BSC 0 n 46 - 46 9	Median 1.3 - 1.3 1.0	95% CI 0.4-2.2 - 0.4-2.2 0.0-2.5	p - - 0.425
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years	Palli n 154 3 154 13 23	ative CHT Median 3.9 4.5 3.9 2.5 3.0	+/- HMA 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0	p - - 0.399	HN n 58 3 58 - 6	IA 1st-line Median 11.7 4.5 11.2 - 5.6	95% Cl 7.0–16.4 0.8–8.3 6.7–15.6 – 0.0–37.9	p - - 0.732	Oth n 96 - 96 13 17	er palliativ Median 2.5 - 2.5 2.5 1.8 2.6	ve CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8	p - - 0.799	BSC 0 n 46 - 46 9 13	Median 1.3 - 1.3 1.0 1.3 2.0	95% Cl 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7	p - - 0.425
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years	Palli n 154 3 154 13 23 49	ative CHT Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0	+/- HMA 95% CI 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6	p - - 0.399	HN n 58 3 58 - 6 20	IA 1st-line Median 11.7 4.5 11.2 - 5.6 8.1 11 8	95% Cl 7.0-16.4 0.8-8.3 6.7-15.6 - 0.0-37.9 1.9-14.4 2.7 10.0	p - - 0.732	Oth n 96 - 96 13 17 29 27	er palliativ Median 2.5 - 2.5 2.5 1.8 2.6 2.8	re CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8 0.8–4.3 1.1.4.4	p - - 0.799	BSC 0 n 46 - 46 9 13 8	Median 1.3 - 1.3 1.0 1.3 0.9 1.6	95% CI 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7 0.0-4.5 0.4.2 2	p - - 0.425
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years > 75 years > 80 years	Palli n 154 3 154 13 23 49 69 33	ative CHT Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0 2.8	+/- HMA 95% CI 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6 2.1-5.9 0.8-4.8	p - - 0.399	HN n 58 3 58 - 6 20 32 12	IA 1st-line Median 11.7 4.5 11.2 - 5.6 8.1 11.8 11.8	95% CI 7.0–16.4 0.8–8.3 6.7–15.6 – 0.0–37.9 1.9–14.4 3.7–19.9	p - - 0.732	Oth n 96 - 96 13 17 29 37 21	er palliativ Median 2.5 - 2.5 2.5 1.8 2.6 2.8 1.1	re CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8 0.8–4.3 1.1–4.4 0.0–2.1	p - - 0.799	BSC 0 n 46 - 46 9 13 8 16 7	Median 1.3 - 1.3 1.0 1.3 0.9 1.6 2.2	95% CI 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7 0.0-4.5 0.4-2.2 0.0 6 8	p - - 0.425
Base of the off off off off off off off off off of	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years > 75 years > 75 years > 80 years ECOC (OS m)	Palli n 154 3 154 13 23 49 69 33	ative CHT Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0 2.8	+/- HMA 95% Cl 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6 2.1-5.9 0.8-4.8	p - - 0.399	HM n 58 3 58 - 6 20 32 12	IA 1st-line Median 11.7 4.5 11.2 - 5.6 8.1 11.8 11.8	95% Cl 7.0-16.4 0.8-8.3 6.7-15.6 - 0.0-37.9 1.9-14.4 3.7-19.9 0-29.9	p - - 0.732	Oth n 96 - 96 13 17 29 37 21	er palliativ Median 2.5 - 2.5 1.8 2.6 2.8 1.1	re CHT 95% Cl 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8 0.8–4.3 1.1–4.4 0.0–2.1	p - - 0.799	BSC 0 n 46 - 46 9 13 8 16 7	Median 1.3 - 1.3 1.0 1.3 0.9 1.6 2.2	95% CI 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7 0.0-4.5 0.4-2.2 0.0-6.9	p - - 0.425
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years > 75 years > 75 years > 80 years ECOG (OS, m) ECOG 0	Palli n 154 3 154 13 23 49 69 33 30	ative CHT Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0 2.8 8.1	+/- HMA 95% Cl 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6 2.1-5.9 0.8-4.8 6.1-10 2	p - - 0.399 < 0.001	HN n 58 3 58 - 6 20 32 12 12	IA 1st-line Median 11.7 4.5 11.2 - 5.6 8.1 11.8 11.8 11.4	95% CI 7.0-16.4 0.8-8.3 6.7-15.6 - 0.0-37.9 1.9-14.4 3.7-19.9 0-29.9 1.9-21.0	p - - 0.732 0.005	Oth n 96 - 96 13 17 29 37 21	er palliativ Median 2.5 - 2.5 1.8 2.6 2.8 1.1 5.0	re CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8 0.8–4.3 1.1–4.4 0.0–2.1 2.9–7 0	p - - 0.799 <0.001	BSC 0 n 46 - 46 9 13 8 16 7 3	Median 1.3 - 1.3 1.0 1.3 0.9 1.6 2.2 3.3	95% CI 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7 0.0-4.5 0.4-2.2 0.0-6.9 0.0 - 8.0	p - - 0.425
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years > 75 years > 80 years ECOG (OS, m) ECOG 0 ECOG 1	Palli n 154 3 154 13 23 49 69 33 30 57	ative CHT Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0 2.8 8.1 5.4	+/- HMA 95% CI 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6 2.1-5.9 0.8-4.8 6.1-10.2 4.2-6.7	p - - 0.399 <0.001	HN/n 58 3 58 - 6 20 32 12 12 14 21	IA 1st-line Median 11.7 4.5 11.2 - 5.6 8.1 11.8 11.8 11.4 17.8	95% CI 7.0-16.4 0.8-8.3 6.7-15.6 - 0.0-37.9 1.9-14.4 3.7-19.9 0-29.9 1.9-21.0 7.5-28.0	p - - 0.732 0.005	Oth n 96 - 96 13 17 29 37 21 16 36	er palliativ Median 2.5 - 2.5 2.5 1.8 2.6 2.8 1.1 5.0 3.9	re CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8 0.8–4.3 1.1–4.4 0.0–2.1 2.9–7.0 1.2–6.7	p - - 0.799 <0.001	BSC 0 n 46 - 46 9 13 8 16 7 3 18	Median 1.3 - 1.3 1.0 1.3 0.9 1.6 2.2 3.3 1.6	95% CI 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7 0.0-4.5 0.4-2.2 0.0-6.9 0.0 8.0 0.0-3.6	p - - 0.425 0.420
ECOG 4 1 0.9 - 1 0.9 - - - - - 2 0.4 - - C1 C1 C1 C1 C1 0.814 - - - - 2 0.40 - 0.819 CC1 0-1 68 3.9 3.0-4.7 34 11.4 3.3-19.6 34 2.6 1.5-3.7 15 1.6 0.4-2.7 CC1 2-3 66 5.4 2.2-8.6 20 17.6 1.9-33.3 46 2.8 1.6-4.0 23 1.0 0.8-1.8 CC1 4-5 15 3.0 0.0-6.2 4 17.30 0.0-42.4 11 1.3 0.0-3.6 5 1.9 0.0-5.0 CC1 4-5 1 0.8 - - - - 1 0.8 0.0-1.3 2 0.03 - - 0.042.4 11 0.8 - 0.013 2 0.03 - - 0.1 0.7 0.8 0.0-5.0 0.05.3 0.0-5.0 0.04.7 10 0.0-5.0 0.04.7 <td>B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years > 75 years > 80 years ECOG (OS, m) ECOG 0 ECOG 1 ECOG 2</td> <td>Palli n 154 3 154 13 23 49 69 33 30 57 46</td> <td>ative CHT Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0 2.8 8.1 5.4 1.6</td> <td>+/- HMA 95% CI 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6 2.1-5.9 0.8-4.8 6.1-10.2 4.2-6.7 1.0-2.1</td> <td>p - - 0.399 <0.001</td> <td>HN/n 58 3 58 - 6 20 32 12 12 14 21 12</td> <td>A 1st-line Median 11.7 4.5 11.2 - 5.6 8.1 11.8 11.8 11.8 11.4 17.8 2.0</td> <td>95% CI 7.0-16.4 0.8-8.3 6.7-15.6 - 0.0-37.9 1.9-14.4 3.7-19.9 0-29.9 1.9-21.0 7.5-28.0 1.2-2.9</td> <td>p - - 0.732 0.005</td> <td>Oth n 96 - 96 13 17 29 37 21 16 36 34</td> <td>er palliativ Median 2.5 - 2.5 1.8 2.6 2.8 1.1 5.0 3.9 1.3</td> <td>re CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8 0.8–4.3 1.1–4.4 0.0–2.1 2.9–7.0 1.2–6.7 0.6–2.1</td> <td>p - - 0.799 <0.001</td> <td>BSC 0 n 46 - 46 9 13 8 16 7 3 18 13</td> <td>Median 1.3 - 1.3 1.0 1.3 0.9 1.6 2.2 3.3 1.6 1.3</td> <td>95% CI 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7 0.0-4.5 0.4-2.2 0.0-6.9 0.0 8.0 0.0-3.6 0.0-2.6</td> <td>p - - 0.425 0.420</td>	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years > 75 years > 80 years ECOG (OS, m) ECOG 0 ECOG 1 ECOG 2	Palli n 154 3 154 13 23 49 69 33 30 57 46	ative CHT Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0 2.8 8.1 5.4 1.6	+/- HMA 95% CI 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6 2.1-5.9 0.8-4.8 6.1-10.2 4.2-6.7 1.0-2.1	p - - 0.399 <0.001	HN/n 58 3 58 - 6 20 32 12 12 14 21 12	A 1st-line Median 11.7 4.5 11.2 - 5.6 8.1 11.8 11.8 11.8 11.4 17.8 2.0	95% CI 7.0-16.4 0.8-8.3 6.7-15.6 - 0.0-37.9 1.9-14.4 3.7-19.9 0-29.9 1.9-21.0 7.5-28.0 1.2-2.9	p - - 0.732 0.005	Oth n 96 - 96 13 17 29 37 21 16 36 34	er palliativ Median 2.5 - 2.5 1.8 2.6 2.8 1.1 5.0 3.9 1.3	re CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8 0.8–4.3 1.1–4.4 0.0–2.1 2.9–7.0 1.2–6.7 0.6–2.1	p - - 0.799 <0.001	BSC 0 n 46 - 46 9 13 8 16 7 3 18 13	Median 1.3 - 1.3 1.0 1.3 0.9 1.6 2.2 3.3 1.6 1.3	95% CI 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7 0.0-4.5 0.4-2.2 0.0-6.9 0.0 8.0 0.0-3.6 0.0-2.6	p - - 0.425 0.420
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years > 75 years > 80 years ECOG (OS, m) ECOG 0 ECOG 1 ECOG 2 ECOG 3	Palli n 154 3 154 13 23 49 69 33 30 57 46 8	ative CHT 4 Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0 2.8 8.1 5.4 1.6 3.5	+/- HMA 95% CI 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6 2.1-5.9 0.8-4.8 6.1-10.2 4.2-6.7 1.0-2.1 0.0-7.1	p - - 0.399 <0.001	HN/ n 58 3 58 - 6 20 32 12 14 21 12 1	A 1st-line Median 11.7 4.5 11.2 - 5.6 8.1 11.8 11.8 11.8 11.4 17.8 2.0 15.7	- 95% CI 7.0-16.4 0.8-8.3 6.7-15.6 - 0.0-37.9 1.9-14.4 3.7-19.9 0-29.9 1.9-21.0 7.5-28.0 1.2-2.9 -	p - - 0.732 0.005	Oth n 96 - 96 13 17 29 37 21 16 36 34 7	er palliativ Median 2.5 - 2.5 1.8 2.6 2.8 1.1 5.0 3.9 1.3 3.5	re CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8 0.8–4.3 1.1–4.4 0.0–2.1 2.9–7.0 1.2–6.7 0.6–2.1 0.0–9.4	p - - 0.799 <0.001	BSC 0 n 46 - 46 9 13 8 16 7 3 18 13 9	Median 1.3 - 1.3 1.0 1.3 0.9 1.6 2.2 3.3 1.6 1.3 0.6	95% CI 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7 0.0-4.5 0.4-2.2 0.0-6.9 0.0 8.0 0.0-3.6 0.0-2.6 0.0-1.8	p - - 0.425
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years > 75 years > 75 years > 80 years ECOG (OS, m) ECOG 0 ECOG 1 ECOG 2 ECOG 3 ECOG 4	Palli n 154 3 154 13 23 49 69 33 30 57 46 8 1	ative CHT Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0 2.8 8.1 5.4 1.6 3.5 0.9	+/- HMA 95% CI 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6 2.1-5.9 0.8-4.8 6.1-10.2 4.2-6.7 1.0-2.1 0.0-7.1 -	p - - 0.399 <0.001	HN/ n 58 3 58 - 6 20 32 12 14 21 12 1 1 1	A 1st-line Median 11.7 4.5 11.2 - 5.6 8.1 11.8 11.8 11.8 11.4 17.8 2.0 15.7 0.9	- - - - 0.0-37.9 1.9-14.4 3.7-19.9 0-29.9 1.9-21.0 7.5-28.0 1.2-2.9 - -	p - - 0.732 0.005	Oth n 96 - 96 13 17 29 37 21 16 36 34 7 -	er palliativ Median 2.5 - 2.5 1.8 2.6 2.8 1.1 5.0 3.9 1.3 3.5 -	re CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8 0.8–4.3 1.1–4.4 0.0–2.1 2.9–7.0 1.2–6.7 0.6–2.1 0.0–9.4 –	p - - 0.799 <0.001	BSC 0 n 46 - 46 9 13 8 16 7 3 18 13 9 2	Median 1.3 - 1.3 1.0 1.3 0.9 1.6 2.2 3.3 1.6 1.3 0.6 0.4	95% CI 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7 0.0-4.5 0.4-2.2 0.0-6.9 0.0 8.0 0.0-3.6 0.0-2.6 0.0-1.8 -	p - - 0.425
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years > 75 years > 75 years > 80 years ECOG (OS, m) ECOG 0 ECOG 1 ECOG 2 ECOG 3 ECOG 4 CCI (OS, m)	Palli n 154 3 154 13 23 49 69 33 30 57 46 8 1	ative CHT Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0 2.8 8.1 5.4 1.6 3.5 0.9	+/- HMA 95% CI 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6 2.1-5.9 0.8-4.8 6.1-10.2 4.2-6.7 1.0-2.1 0.0-7.1 -	p - - 0.399 <0.001	HN n 58 58 - 6 20 32 12 12 14 21 12 1 1	A 1st-line Median 11.7 4.5 11.2 - 5.6 8.1 11.8 11.8 11.8 11.4 17.8 2.0 15.7 0.9	- 95% CI 7.0-16.4 0.8-8.3 6.7-15.6 - 0.0-37.9 1.9-14.4 3.7-19.9 0-29.9 1.9-21.0 7.5-28.0 1.2-2.9 - -	p - - 0.732 0.005	Oth n 96 - 96 13 17 29 37 21 16 36 34 7 -	er palliativ Median 2.5 - 2.5 1.8 2.6 2.8 1.1 5.0 3.9 1.3 3.5 -	re CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8 0.8–4.3 1.1–4.4 0.0–2.1 2.9–7.0 1.2–6.7 0.6–2.1 0.0–9.4 –	p - - 0.799 <0.001	BSC - n 46 - 46 9 13 8 16 7 3 18 13 9 2	Median 1.3 - 1.3 1.0 1.3 0.9 1.6 2.2 3.3 1.6 1.3 0.6 0.4	95% CI 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7 0.0-4.5 0.4-2.2 0.0-6.9 0.0 8.0 0.0-3.6 0.0-3.6 0.0-1.8 -	p - - 0.425 0.420 0.819
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years > 75 years > 80 years ECOG (OS, m) ECOG 0 ECOG 1 ECOG 2 ECOG 3 ECOG 4 CCI (OS, m) CCI 0–1	Pallii n 154 3 154 13 23 49 69 33 30 57 46 8 1 68	ative CHT Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0 2.8 8.1 5.4 1.6 3.5 0.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 4.5 3.0 4.7 4.0 3.8 4.7 4.0 3.8 4.7 4.0 3.8 4.7 4.0 3.8 4.7 4.0 3.8 4.7 4.0 3.8 4.7 4.0 3.8 4.7 4.0 3.8 4.7 4.0 3.8 4.7 4.0 3.8 4.7 4.0 3.8 4.7 4.0 3.8 4.7 4.0 3.8 4.7 4.0 3.8 4.7 4.0 3.8 4.7 4.0 3.8 4.7 4.0 3.8 4.7 4.0 3.9 4.7 4.0 3.9 4.7 4.0 3.9 4.7 4.0 3.9 4.7 4.0 3.9 4.7 4.0 3.9 4.7 4.0 3.9 4.7 4.0 3.9 4.7 4.0 3.9 4.7 4.0 3.9 4.7 4.0 3.9 4.7 4.0 3.5 4.1 5.4 4.1 5.4 4.1 5.4 3.5 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	+/- HMA 95% Cl 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6 2.1-5.9 0.8-4.8 6.1-10.2 4.2-6.7 1.0-2.1 0.0-7.1 - 3.0-4.7	p - - 0.399 <0.001	H n 58 3 58 - 6 20 32 12 14 21 1 1 34	A 1st-line Mediar 11.7 4.5 11.2 - 5.6 8.1 11.8 11.8 11.8 11.4 17.8 2.0 15.7 0.9 11.4	95% Cl 7.0-16.4 0.8-8.3 6.7-15.6 - 0.0-37.9 1.9-14.4 3.7-19.9 0-29.9 1.9-21.0 7.5-28.0 1.2-2.9 - - 3.3-19.6	p - - 0.732 0.005	Oth n 96 - 96 13 17 29 37 21 16 36 34 7 - 34	er palliativ Median 2.5 - 2.5 1.8 2.6 2.8 1.1 5.0 3.9 1.3 3.5 - 2.6	re CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8 0.8–4.3 1.1–4.4 0.0–2.1 2.9–7.0 1.2–6.7 0.6–2.1 0.0–9.4 - 1.5–3.7	p - - 0.799 <0.001	BSC n n 46 - 46 9 13 8 16 7 3 18 13 9 2 15	Median 1.3 - 1.3 1.0 1.3 0.9 1.6 2.2 3.3 1.6 1.3 0.6 0.4 1.6	95% Cl 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7 0.0-4.5 0.4-2.2 0.0-6.9 0.0 8.0 0.0-3.6 0.0-2.6 0.0-1.8 - 0.4-2.7	p - - 0.425 0.420 0.819
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years > 75 years > 75 years > 80 years ECOG (OS, m) ECOG 0 ECOG 1 ECOG 2 ECOG 3 ECOG 4 CCI (OS, m) CCI 0–1 CCI 2–3	Pallii n 154 3 154 13 23 49 69 33 30 57 46 8 1 68 66	ative CHT Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0 2.8 8.1 5.4 1.6 3.5 0.9 3.9 5.4	+/- HMA 95% Cl 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6 2.1-5.9 0.8-4.8 6.1-10.2 4.2-6.7 1.0-2.1 0.0-7.1 - 3.0-4.7 2.2-8.6	p - - 0.399 <0.001	HN/n 58 3 58 3 58 - 6 20 32 12 14 12 1 1 1 34 20	A 1st-line Mediar 11.7 4.5 11.2 - 5.6 8.1 11.8 11.8 11.4 17.8 2.0 15.7 0.9 11.4 17.6	- 95% Cl 7.0-16.4 0.8-8.3 6.7-15.6 - 0.0-37.9 1.9-14.4 3.7-19.9 0-29.9 1.9-21.0 7.5-28.0 1.2-2.9 - 3.3-19.6 1.9-33.3	p - - 0.732 0.005	Oth n 96 - 96 13 17 29 37 21 16 36 34 7 - 34 46	er palliativ Median 2.5 - 2.5 1.8 2.6 2.8 1.1 5.0 3.9 1.3 3.5 - 2.6 2.8 2.4 2.8 1.1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	re CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8 0.8–4.3 1.1–4.4 0.0–2.1 2.9–7.0 1.2–6.7 0.6–2.1 0.0–9.4 - 1.5–3.7 1.6–4.0	p - - 0.799 <0.001	BSC 0 n 46 - 46 9 13 8 16 7 3 18 13 9 2 15 23	Median 1.3 - 1.3 1.0 1.3 0.9 1.6 2.2 3.3 1.6 1.3 0.6 0.4 1.6 1.0 1.3 0.6 0.4 1.6 1.0 1.3 0.6 1.3 0.6 1.3 0.9 1.6 1.3 0.9 1.6 1.3 0.9 1.6 1.3 0.9 1.6 1.3 0.9 1.6 1.3 0.9 1.6 1.3 0.9 1.6 1.3 0.9 1.6 1.3 0.9 1.6 1.3 0.9 1.6 1.3 0.9 1.6 1.3 0.9 1.6 1.3 0.9 1.6 1.3 0.9 1.6 1.3 0.6 1.3 1.6 1.3 0.6 1.3 1.6 1.3 0.6 1.3 1.6 1.3 1.6 1.3 1.6 1.3 1.6 1.3 1.6 1.3 1.6 1.3 1.6 1.3 1.6 1.3 1.6 1.6 1.0 1.6 1.3 1.6 1.6 1.0 1.6 1.0 1.6 1.0 1.6 1.0 1.6 1.0 1.0 1.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	95% CI 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7 0.0-4.5 0.4-2.2 0.0-6.9 0.0-3.6 0.0-3.6 0.0-2.6 0.0-1.8 - 0.4-2.7 0.8-1.8	p - - 0.425 0.425 0.420
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years > 75 years > 75 years > 80 years ECOG (OS, m) ECOG 0 ECOG 1 ECOG 2 ECOG 3 ECOG 4 CCI (OS, m) CCI 0–1 CCI 2–3 CCI 4–5	Pallii n 154 3 154 13 23 49 69 33 30 57 46 8 1 68 66 15	ative CHT Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0 2.8 8.1 5.4 1.6 3.5 0.9 3.9 5.4 3.0	+/- HMA 95% Cl 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6 2.1-5.9 0.8-4.8 6.1-10.2 4.2-6.7 1.0-2.1 0.0-7.1 - 3.0-4.7 2.2-8.6 0.0-6.2	p - - 0.399 <0.001	HN/n 58 3 58 3 58 - 6 0 32 12 14 21 12 1 1 1 34 20 4	A 1st-line Mediar 11.7 4.5 11.2 - 5.6 8.1 11.8 11.8 11.8 11.4 17.8 2.0 15.7 0.9 11.4 17.6 17.3	- 95% Cl 7.0-16.4 0.8-8.3 6.7-15.6 - 0.0-37.9 1.9-14.4 3.7-19.9 0-29.9 1.9-21.0 7.5-28.0 1.2-2.9 - 3.3-19.6 1.9-33.3 0.0-42.4	p - - 0.732 0.005	Oth n 96 - 96 13 17 29 37 21 16 36 34 7 - 34 46 11	er palliativ Median 2.5 - 2.5 1.8 2.6 2.8 1.1 5.0 3.9 1.3 3.5 - 2.6 2.8 1.1 3.9 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 2.6 2.8 1.3 2.6 2.8 1.3 2.6 2.8 1.3 2.6 2.8 1.3 2.6 2.8 1.3 2.6 2.8 1.3 2.6 2.8 1.3 2.6 2.8 1.3 2.6 2.8 1.3 2.6 2.8 1.3 2.6 2.8 1.3 2.6 2.8 1.3 2.6 2.8 1.3 2.8 1.3 2.8 1.3 2.6 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	re CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8 0.8–4.3 1.1–4.4 0.0–2.1 2.9–7.0 1.2–6.7 0.6–2.1 0.0–9.4 - 1.5–3.7 1.6–4.0 0.0–3.6	p - - 0.799 <0.001	BSC 0 n 46 - 46 9 13 8 16 7 3 18 13 9 2 15 23 5	Median 1.3 - 1.3 1.0 1.3 0.9 1.6 2.2 3.3 1.6 1.3 0.6 0.4 1.6 1.0 1.3 0.6 0.4 1.9	95% CI 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7 0.0-4.5 0.4-2.2 0.0-6.9 0.0-3.6 0.0-3.6 0.0-2.6 0.0-1.8 - 0.4-2.7 0.8-1.8 0.0-5.0	p - - 0.425 0.425
Subtype (05, m) 0.004 0.724 0.192 0.192 0.543 De novo AML 52 1.8 1.2-25 15 11.2 5.1-17.2 37 1.8 1.0-2.6 20 1.3 0.0-3.8 sAML 76 5.6 3.5-7.7 37 12.6 2.4-22.8 39 3.1 1.5-4.7 16 1.2 0.6-1.8 tAML 21 2.6 0.0-6.6 5 22.2 0.0-53.7 16 2.2 0.0-4.7 8 1.0 0.0-2.5 ELN risk (OS, m) co.001 0.006 0.089 Favorable 7 0.8 0.7-0.9 1 1.4 - 6 0.8 0.5-1.1 1 0.2 - Intermediate 57 6.7 3.7-9.6 24 20.6 7.5-33.6 33 3.9 1.9-6.0 13 3.3 1.5-5.1	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years > 75 years > 80 years ECOG (OS, m) ECOG 0 ECOG 1 ECOG 2 ECOG 3 ECOG 4 CCI (OS, m) CCI 0–1 CCI 2–3 CCI 4–5 CCI 6–7	Pallii n 154 3 154 13 23 49 69 33 30 57 46 8 1 68 66 15 3	ative CHT Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0 2.8 8.1 5.4 1.6 3.5 0.9 3.9 3.9 5.4 3.0 0.6 6 6 6 6 6 6 6 6 6 6 6 6 6	+/- HMA 95% Cl 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6 2.1-5.9 0.8-4.8 6.1-10.2 4.2-6.7 1.0-2.1 0.0-7.1 - 3.0-4.7 2.2-8.6 0.0-6.2 0.0-1.3	p - - 0.399 <0.001	HN/ n 58 3 58 - 6 20 32 12 12 14 21 1 1 34 20 4 - - - - - - - - - - - - -	A 1st-line Mediar 11.7 4.5 11.2 - 5.6 8.1 11.8 11.8 11.8 11.4 17.8 2.0 15.7 0.9 11.4 17.6 17.3 -	 95% CI 7.0-16.4 0.8-8.3 6.7-15.6 0.0-37.9 1.9-14.4 3.7-19.9 0-29.9 1.9-21.0 7.5-28.0 1.2-2.9 3.3-19.6 1.9-33.3 0.0-42.4 - 	p - - 0.732 0.005	Oth n 96 - 96 13 17 29 37 21 16 36 34 7 - 34 46 11 3 -	er palliativ Median 2.5 - 2.5 1.8 2.6 2.8 1.1 5.0 3.9 1.3 3.5 - 2.6 2.8 1.1 5.0 3.9 1.3 3.5 - 2.6 2.8 1.3 0.6 2.8 1.3 0.6 2.8 1.3 0.5 - 2.6 2.8 1.3 0.5 - 2.6 2.8 1.3 0.5 - 2.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	re CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8 0.8–4.3 1.1–4.4 0.0–2.1 2.9–7.0 1.2–6.7 0.6–2.1 0.0–9.4 - 1.5–3.7 1.6–4.0 0.0–3.6 0.0–1.3	p - - 0.799 <0.001	BSC 0 n 46 - 46 9 13 8 16 7 3 18 13 9 2 15 23 5 2 1	Median 1.3 - 1.3 1.0 1.3 0.9 1.6 2.2 3.3 1.6 1.3 0.6 0.4 1.6 1.0 1.9 0.03 1.7 1.3 1.0 1.3 0.9 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	95% CI 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7 0.0-4.5 0.4-2.2 0.0-6.9 0.08.0 0.0-3.6 0.0-2.6 0.0-1.8 - 0.4-2.7 0.8-1.8 0.0-5.0 -	p - - 0.425 0.425 0.429
Definition 32 1.0 $1.2-2.5$ 15 11.2 $5.1-17.2$ 37 1.8 $1.0-2.6$ 20 1.3 $0.0-3.8$ sAML 76 5.6 $3.5-7.7$ 37 12.6 $2.4-22.8$ 39 3.1 $1.5-4.7$ 16 1.2 $0.6-1.8$ tAML 21 2.6 $0.0-6.6$ 5 22.2 $0.0-53.7$ 16 2.2 $0.0-4.7$ 8 1.0 $0.0-2.5$ ELN risk (OS, m) < 0.001 < 0.001 < 0.006 0.006 0.006 0.089 Favorable 7 0.8 $0.7-0.9$ 1 1.4 $ 6$ 0.8 $0.5-1.1$ 1 0.2 $-$ Intermediate 57 6.7 $3.7-9.6$ 24 20.6 $7.5-33.6$ 33 3.9 $1.9-6.0$ 13 3.3 $1.5-5.1$ Advarea 45 51 21.81 18 66 24.228 27 26 $0.0.64$ 10 12 0.7 16	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years > 75 years > 80 years ECOG (OS, m) ECOG 0 ECOG 1 ECOG 2 ECOG 3 ECOG 4 CCI (OS, m) CCI 0–1 CCI 2–3 CCI 4–5 CCI 6–7 CCI 8–10 Sebtene (OS, m)	Pallii n 154 3 154 13 23 49 69 33 30 57 46 8 1 68 66 15 3 1	ative CHT Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0 2.8 8.1 5.4 1.6 3.5 0.9 3.9 5.4 3.0 0.6 0.8	+/- HMA 95% CI 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6 2.1-5.9 0.8-4.8 6.1-10.2 4.2-6.7 1.0-2.1 0.0-7.1 - 3.0-4.7 2.2-8.6 0.0-6.2 0.0-1.3 -	p - - 0.399 <0.001	HN/ n 58 3 58 - 6 20 32 12 14 21 1 1 34 20 4 - - - - - - - - - - - - -	A 1st-line Median 11.7 4.5 11.2 - 5.6 8.1 11.8 11.4 17.8 2.0 15.7 0.9 11.4 17.6 17.3 - - -	 95% CI 7.0-16.4 0.8-8.3 6.7-15.6 0.0-37.9 1.9-14.4 3.7-19.9 0-29.9 1.9-21.0 7.5-28.0 1.2-2.9 3.3-19.6 1.9-33.3 0.0-42.4 - 	p - - 0.732 0.005 0.814	Oth n 96 - 96 13 17 29 37 21 16 36 34 46 11 3 1	er palliativ Median 2.5 - 2.5 1.8 2.6 2.8 1.1 5.0 3.9 1.3 3.5 - 2.6 2.8 1.1 5.0 3.9 1.3 3.5 - 2.6 2.8 1.3 0.6 0.8	re CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8 0.8–4.3 1.1–4.4 0.0–2.1 2.9–7.0 1.2–6.7 0.6–2.1 0.0–9.4 - 1.5–3.7 1.6–4.0 0.0–3.6 0.0–1.3 -	p - - 0.799 <0.001 <0.001	BSC 0 n 46 - 46 9 13 8 16 7 3 18 13 9 2 15 23 5 2 1	Median 1.3 - 1.3 1.0 1.3 0.9 1.6 2.2 3.3 1.6 1.3 0.6 0.4 1.6 1.0 1.9 0.03 1.7	95% CI 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7 0.0-4.5 0.4-2.2 0.0-6.9 0.0 8.0 0.0-3.6 0.0-2.6 0.0-1.8 - 0.4-2.7 0.8-1.8 0.0-5.0 - -	p - - 0.425 0.425 0.420 0.819
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years > 75 years > 80 years ECOG (OS, m) ECOG 0 ECOG 1 ECOG 2 ECOG 3 ECOG 4 CCI (OS, m) CCI 0–1 CCI 2–3 CCI 4–5 CCI 6–7 CCI 8–10 Subtype (OS, m)	Pallii n 154 3 154 13 23 49 69 33 30 57 46 8 1 68 66 15 3 1	Ative CHT Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0 2.8 8.1 5.4 1.6 3.5 0.9 3.9 5.4 3.0 0.6 0.8 0.8	+/- HMA 95% CI 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6 2.1-5.9 0.8-4.8 6.1-10.2 4.2-6.7 1.0-2.1 0.0-7.1 - 3.0-4.7 2.2-8.6 0.0-6.2 0.0-1.3 - 1.2.2.5	p - - 0.399 <0.001 <0.001	HN/n 58 3 58 - 6 20 32 12 14 21 1 1 34 20 32 12 14 - 1 1 1 1 1 1 1 1 1 1 1 1 1	A 1st-line Median 11.7 4.5 11.2 - 5.6 8.1 11.8 11.4 17.8 2.0 15.7 0.9 11.4 17.6 17.3 - - 11.2 - 11.2 - - - - - - - - - - - - -	 95% CI 7.0-16.4 0.8-8.3 6.7-15.6 0.0-37.9 1.9-14.4 3.7-19.9 0-29.9 1.9-21.0 7.5-28.0 1.2-2.9 3.3-19.6 1.9-33.3 0.0-42.4 - 5.1.17.2 	p - - 0.732 0.005 0.814	Oth n 96 - 96 13 17 29 37 21 16 36 34 46 11 3 1	er palliativ Median 2.5 - 2.5 2.5 2.5 2.5 2.5 2.5 2.6 2.8 1.1 5.0 3.9 1.3 3.5 - 2.6 2.8 1.1 5.0 3.9 1.3 3.5 - 2.6 2.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.5 1.3 0.5 1.3 0.5 1.3 0.5 1.3 0.5 1.3 0.5 1.3 0.5 1.3 0.5 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.8 1.3 0.6 0.8 1.3 0.8 1.3 0.6 0.8 1.3 0.8 1.3 0.6 0.8 1.3 0.8 1.3 0.6 0.8 1.3 0.8 1.3 0.6 0.8 1.3 0.8 1.3 0.6 0.8 1.3 0.8 1.3 0.8 1.3 0.6 0.8 1.3 0.8 1.3 0.6 0.8 1.8 0.8 1.3 0.6 0.8 1.8 0.8 1.8 0.8 1.3 0.6 0.8 1.8 1.8 1.3 0.6 0.8 1.8 1.8 1.3 0.6 0.8 1.8 1.8 1.3 0.6 0.8 1.8 1.8 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	re CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8 0.8–4.3 1.1–4.4 0.0–2.1 2.9–7.0 1.2–6.7 0.6–2.1 0.0–9.4 - 1.5–3.7 1.6–4.0 0.0–3.6 0.0–1.3 -	p - - 0.799 <0.001 <0.001	BSC n n 46 - 46 9 13 8 16 7 3 18 13 9 2 15 23 5 2 1 20	Median 1.3 - 1.3 1.0 1.3 0.9 1.6 2.2 3.3 1.6 1.3 0.6 0.4 1.6 1.0 1.9 0.03 1.7 1.3	95% CI 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7 0.0-4.5 0.4-2.2 0.0-6.9 0.0 8.0 0.0-3.6 0.0-2.6 0.0-1.8 - 0.4-2.7 0.8-1.8 0.0-5.0 - - 0.0-2.8	p - - 0.425 0.425 0.420 0.819
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years > 75 years > 80 years ECOG (OS, m) ECOG 0 ECOG 1 ECOG 2 ECOG 3 ECOG 4 CCI (OS, m) CCI 0–1 CCI 2–3 CCI 4–5 CCI 6–7 CCI 8–10 Subtype (OS, m) De novo AML ccAMI	Pallii n 154 3 154 13 23 49 69 33 30 57 46 8 1 68 66 15 3 1 52 76	ative CHT Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0 2.8 8.1 5.4 1.6 3.5 0.9 3.9 5.4 3.0 0.6 0.8 1.8 5.6	+/- HMA 95% CI 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6 2.1-5.9 0.8-4.8 6.1-10.2 4.2-6.7 1.0-2.1 0.0-7.1 - 3.0-4.7 2.2-8.6 0.0-6.2 0.0-1.3 - 1.2-2.5 3.5 7.7	p - - 0.399 <0.001 <0.001	HN/n 58 3 58 - 6 20 32 12 14 11 1 1 34 20 32 12 14 1 1 1 1 1 1 1 1 1 1 1 1 1	A 1st-line Median 11.7 4.5 11.2 - 5.6 8.1 11.8 11.4 17.8 2.0 15.7 0.9 11.4 17.6 17.3 - - 11.2 12.6	 95% CI 7.0-16.4 0.8-8.3 6.7-15.6 0.0-37.9 1.9-14.4 3.7-19.9 0-29.9 1.9-21.0 7.5-28.0 1.2-2.9 - 3.3-19.6 1.9-33.3 0.0-42.4 - 5.1-17.2 2.4.22.9 	p - - 0.732 0.005 0.814	Oth n 96 - 96 13 17 29 37 21 16 36 34 7 - 34 46 11 3 1 37 20	er palliativ Median 2.5 - 2.5 2.5 2.5 2.5 1.8 2.6 2.8 1.1 5.0 3.9 1.3 3.5 - 2.6 2.8 1.1 5.0 3.9 1.3 3.5 - 2.6 2.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 2.6 2.8 1.3 3.5 3.5 2.6 2.8 1.3 3.5 3.5 3.5 2.8 1.3 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	re CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8 0.8–4.3 1.1–4.4 0.0–2.1 2.9–7.0 1.2–6.7 0.6–2.1 0.0–9.4 - 1.5–3.7 1.6–4.0 0.0–3.6 0.0–1.3 - 1.0–2.6	p - - 0.799 <0.001 <0.001	BSC n n 46 - 46 9 13 8 16 7 3 18 13 9 2 15 23 5 2 1 12 20	Median 1.3 - 1.3 1.0 1.3 0.9 1.6 2.2 3.3 1.6 1.3 0.6 0.4 1.6 1.0 1.9 0.03 1.7 1.3 1.2	95% CI 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7 0.0-4.5 0.4-2.2 0.0-6.9 0.0 8.0 0.0-3.6 0.0-2.6 0.0-1.8 - 0.4-2.7 0.8-1.8 0.0-5.0 - - 0.0-3.8	p - - 0.425 0.425 0.420 0.819
Favorable 7 0.8 0.7-0.9 1 1.4 - 6 0.8 0.5-1.1 1 0.2 - Intermediate 57 6.7 3.7-9.6 24 20.6 7.5-33.6 33 3.9 1.9-6.0 13 3.3 1.5-5.1 Advarse 45 5.1 21.8.1 1.8 6.6 2.4.22.8 27 2.6 0.0.6.4 10 1.2 0.7 1.6	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years > 75 years > 80 years ECOG (OS, m) ECOG 0 ECOG 1 ECOG 2 ECOG 3 ECOG 4 CCI (OS, m) CCI 0–1 CCI 2–3 CCI 4–5 CCI 6–7 CCI 8–10 Subtype (OS, m) De novo AML sAML tAMI	Pallii n 154 3 154 13 23 49 69 33 30 57 46 8 1 68 66 15 3 1 52 76 62	ative CHT 4 Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0 2.8 8.1 5.4 1.6 3.5 0.9 3.9 5.4 3.0 0.6 0.8 1.8 5.6 2.6	+/- HMA 95% CI 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6 2.1-5.9 0.8-4.8 6.1-10.2 4.2-6.7 1.0-2.1 0.0-7.1 - 3.0-4.7 2.2-8.6 0.0-6.2 0.0-1.3 - 1.2-2.5 3.5-7.7 0.0-6.6	p - - 0.399 <0.001 <0.001	HN/ n 58 3 58 - 6 20 32 12 14 21 1 1 1 34 20 4 - - 15 37 5	A 1st-line Mediar 11.7 4.5 11.2 - 5.6 8.1 11.8 11.4 17.8 2.0 15.7 0.9 11.4 17.6 17.3 - - 11.2 12.6 22.2	95% CI 7.0-16.4 0.8-8.3 6.7-15.6 - 0.0-37.9 1.9-14.4 3.7-19.9 0-29.9 1.9-21.0 7.5-28.0 1.2-2.9 - 3.3-19.6 1.9-33.3 0.0-42.4 - 5.1-17.2 2.4-22.8 0.53.7	p - - 0.732 0.005 0.814	Oth n 96 - 96 13 17 29 37 21 16 36 34 46 11 31 31 37 39 16	er palliativ Median 2.5 - 2.5 1.8 2.6 2.8 1.1 5.0 3.9 1.3 3.5 - 2.6 2.8 1.1 5.0 3.9 1.3 3.5 - 2.6 2.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.5 - 2.6 2.8 1.3 0.6 0.8 1.3 0.5 - 2.6 2.8 1.3 0.5 - 2.6 2.8 1.3 0.5 - 2.6 2.8 1.3 0.5 - 2.6 2.8 1.3 0.5 - 2.6 2.8 1.3 0.5 - 2.6 2.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.5 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.5 0.5 1.3 0.6 0.8 1.3 0.5 1.3 0.5 0.8 1.3 0.6 0.8 1.3 0.5 0.8 0.8 1.3 0.6 0.8 1.8 3.1 2.2	re CHT 95% CI 1.8-3.2 - 1.8-3.2 2.0-3.0 0.9-2.8 0.8-4.3 1.1-4.4 0.0-2.1 2.9-7.0 1.2-6.7 0.6-2.1 0.0-9.4 - 1.5-3.7 1.6-4.0 0.0-3.6 0.0-1.3 - 1.0-2.6 1.5-4.7 0.0-4.7	p - - 0.799 <0.001 <0.001 0.192	BSC 0 n 46 - 46 9 13 8 16 7 3 18 13 9 2 15 23 5 2 1 20 16 8	Median 1.3 - 1.3 1.0 1.3 0.9 1.6 2.2 3.3 1.6 1.3 0.6 0.4 1.6 1.0 1.9 0.03 1.7 1.3 1.2 1.0 1.3 1.1 1.3 1.1 1.3 1.0 1.3 1.3 1.1 1.3 1.3 1.4 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	95% CI 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7 0.0-4.5 0.4-2.2 0.0-6.9 0.0-3.6 0.0-3.6 0.0-2.6 0.0-1.8 - 0.4-2.7 0.8-1.8 0.0-5.0 - - 0.0-3.8 0.0-3.8 0.0-3.8 0.0-3.8 0.0-3.8 0.0-3.8 0.0-3.8 0.0-3.8 0.0-3.8 0.0-3.8 0.0-3.8 0.0-3.8 0.0-3.5 0.0-3.8 0.0-3.8 0.0-3.5 0.0-3.5 0.0-3.8 0.0-3.5 0.0-3.8 0.0-3.5 0.0-3.8 0	p - - 0.425 0.425 0.420 0.819 0.543
Intermediate 57 6.7 3.7–9.6 24 20.6 7.5–33.6 33 3.9 1.9–6.0 13 3.3 1.5–5.1 Advarce 45 51 21-81 18 66 24.228 27 36 00.64 10 1.2 0.7.16	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years > 75 years > 80 years ECOG (OS, m) ECOG 0 ECOG 1 ECOG 2 ECOG 3 ECOG 4 CCI (OS, m) CCI 0–1 CCI 2–3 CCI 4–5 CCI 6–7 CCI 8–10 Subtype (OS, m) De novo AML sAML ELN rick (OS m)	Pallii n 154 3 154 13 23 49 69 33 30 57 46 8 1 68 66 15 3 1 52 76 21	ative CHT Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0 2.8 8.1 5.4 1.6 3.5 0.9 3.9 5.4 3.0 0.6 0.8 1.8 5.6 2.6	+/- HMA 95% Cl 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6 2.1-5.9 0.8-4.8 6.1-10.2 4.2-6.7 1.0-2.1 0.0-7.1 - 3.0-4.7 2.2-8.6 0.0-6.2 0.0-1.3 - 1.2-2.5 3.5-7.7 0.0-6.6	p - - 0.399 <0.001 <0.001	HIV n 58 3 58 - 6 20 32 12 14 21 1 1 1 34 20 4 - - - - - - - - - - - - -	A 1st-line Mediar 11.7 4.5 11.2 - 5.6 8.1 11.8 11.8 11.8 11.4 17.8 2.0 15.7 0.9 11.4 17.6 17.3 - - 11.2 12.6 22.2	95% Cl 7.0-16.4 0.8-8.3 6.7-15.6 - 0.0-37.9 1.9-14.4 3.7-19.9 0-29.9 1.9-21.0 7.5-28.0 1.2-2.9 - 3.3-19.6 1.9-33.3 0.0-42.4 - 5.1-17.2 2.4-22.8 0.0-53.7	p - - 0.732 0.005 0.814 0.724	Oth n 96 - 96 13 17 29 37 21 16 36 34 46 11 3 1 37 39 16	er palliativ Median 2.5 - 2.5 1.8 2.6 2.8 1.1 5.0 3.9 1.3 3.5 - 2.6 2.8 1.1 5.0 3.9 1.3 3.5 - 2.6 2.8 1.1 5.0 3.9 1.3 3.5 - 1.8 2.6 2.8 1.1 2.6 2.8 1.1 2.6 2.8 1.1 2.6 2.8 1.1 2.6 2.8 1.1 2.6 2.8 1.1 2.6 2.8 1.1 2.6 2.8 1.1 2.6 2.8 1.1 2.6 2.8 1.1 2.6 2.8 1.1 2.6 2.8 1.1 2.6 2.8 1.1 2.6 2.8 1.1 2.6 2.8 1.1 2.6 2.8 1.1 2.6 2.8 1.1 2.6 2.8 1.1 2.6 2.8 1.3 3.5 - 2.6 2.8 1.3 3.5 2.6 2.8 1.3 3.5 2.6 2.8 1.3 3.5 2.6 2.8 1.3 3.5 2.6 2.8 1.3 3.5 2.6 2.8 1.3 3.5 2.6 2.8 1.3 3.5 2.6 2.8 1.3 3.5 2.8 1.3 3.5 2.8 1.3 3.5 2.8 1.3 3.5 2.8 1.3 3.5 2.8 1.3 3.5 2.8 1.3 3.5 2.8 1.3 3.5 2.8 1.3 3.5 2.8 1.3 3.5 2.8 1.3 3.5 2.8 1.3 3.5 2.8 1.3 3.5 2.8 1.3 3.5 2.8 1.3 3.1 2.2	re CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8 0.8–4.3 1.1–4.4 0.0–2.1 2.9–7.0 1.2–6.7 0.6–2.1 0.0–9.4 - 1.5–3.7 1.6–4.0 0.0–3.6 0.0–1.3 - 1.0–2.6 1.5–4.7 0.0–4.7	p - - 0.799 <0.001 <0.001 0.192 0.006	BSC 0 n 46 - 46 9 13 8 16 7 3 18 13 9 2 15 23 5 2 1 20 16 8	Median 1.3 - 1.3 - 1.3 0.9 1.6 2.2 3.3 1.6 1.3 0.6 1.3 0.6 0.4 1.6 1.0 1.9 0.03 1.7 1.3 1.2 1.0 1.3 1.6 1.3 1.6 1.3 1.6 1.3 1.6 1.3 1.6 1.3 1.6 1.3 1.6 1.3 1.6 1.3 1.6 1.3 1.6 1.3 1.6 1.3 1.6 1.3 1.6 1.3 1.6 1.3 1.7 1.6 1.7 1.7 1.7 1.7 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	95% Cl 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7 0.0-4.5 0.4-2.2 0.0-6.9 0.0-3.6 0.0-2.6 0.0-1.8 - 0.4-2.7 0.8-1.8 0.0-5.0 - - 0.0-3.8 0.6-1.8 0.0-2.5	p - - 0.425 0.420 0.819 0.543
Advance 45 51 21_81 18 66 24_228 27 26 00.64 10.12 07.16	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years > 75 years > 80 years ECOG (OS, m) ECOG 0 ECOG 1 ECOG 2 ECOG 3 ECOG 4 CCI (OS, m) CCI 0–1 CCI 2–3 CCI 4–5 CCI 6–7 CCI 8–10 Subtype (OS, m) De novo AML sAML ELN risk (OS, m) Favorable	Pallii n 154 3 154 13 23 49 69 33 30 57 46 8 1 68 66 15 3 1 52 76 21 7	ative CHT Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0 2.8 8.1 5.4 1.6 3.5 0.9 3.9 5.4 3.0 0.6 0.8 1.8 5.6 2.6 0.8	+/- HMA 95% Cl 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6 2.1-5.9 0.8-4.8 6.1-10.2 4.2-6.7 1.0-2.1 0.0-7.1 - 3.0-4.7 2.2-8.6 0.0-6.2 0.0-1.3 - 1.2-2.5 3.5-7.7 0.0-6.6 0.7-0.9	p - - 0.399 <0.001 <0.001	HIV n 58 3 58 - 6 20 32 12 14 21 12 1 1 34 20 4 - - 15 37 5 1	A 1st-line Mediar 11.7 4.5 11.2 - 5.6 8.1 11.8 11.4 17.8 2.0 15.7 0.9 11.4 17.6 17.3 - 11.2 12.6 22.2 1.4	 95% Cl 7.0–16.4 0.8–8.3 6.7–15.6 – 0.0–37.9 1.9–14.4 3.7–19.9 0–29.9 1.9–21.0 7.5–28.0 1.2–2.9 – 3.3–19.6 1.9–33.3 0.0–42.4 – 5.1–17.2 2.4–22.8 0.0–53.7 	p - - 0.732 0.005 0.814 0.724 <0.001	Oth n 96 - 96 13 17 29 37 21 16 36 34 46 11 3 1 37 39 16 6	er palliativ Median 2.5 - 2.5 1.8 2.6 2.8 1.1 5.0 3.9 1.3 3.5 - 2.6 2.8 1.1 5.0 3.9 1.3 3.5 - 2.6 2.8 1.3 0.6 0.8 1.8 3.1 2.2 0.8 1.8 3.1 2.2 0.8 3.1 2.2 0.8 3.1 2.2 0.8 3.1 2.2 0.8 3.1 3.2 0.6 0.8 3.1 2.2 0.8 3.1 3.2 0.6 0.8 3.1 3.2 0.6 0.8 3.5 0.8 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.8 3.1 2.2 0.8 1.8 3.1 2.2 0.8 1.8 3.1 2.2 0.8 1.8 3.1 2.2 0.8 1.8 3.1 2.2 0.8 3.1 2.2 0.8 3.1 2.2 0.8 3.1 2.2 0.8 3.1 2.2 0.8 3.1 2.2 0.8 3.1 2.2 0.8 3.1 2.2 0.8 3.1 2.2 0.8 3.1 2.2 0.8 0.8 3.1 2.2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8	re CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8 0.8–4.3 1.1–4.4 0.0–2.1 2.9–7.0 1.2–6.7 0.6–2.1 0.0–9.4 - 1.5–3.7 1.6–4.0 0.0–3.6 0.0–1.3 - 1.0–2.6 1.5–4.7 0.0–4.7 0.5–1.1	p - - 0.799 <0.001 <0.001 0.192 0.006	BSC n n 46 - 46 9 13 8 16 7 3 18 13 9 2 15 23 5 2 1 15 23 5 2 1 20 16 8 1	Median 1.3 - 1.3 1.0 1.3 0.9 1.6 2.2 3.3 1.6 1.3 0.6 0.4 1.6 1.0 1.9 0.03 1.7 1.3 1.2 1.0 0.2	95% Cl 0.4-2.2 - 0.0-2.5 0.0-2.7 0.0-4.5 0.4-2.2 0.0-6.9 0.0-3.6 0.0-2.6 0.0-2.6 0.0-3.8 0.0-2.7 0.8-1.8 0.0-5.0 - - 0.0-3.8 0.6-1.8 0.0-2.5 - -	p - - 0.425 0.420 0.819 0.543 0.089
$\frac{1}{10000000000000000000000000000000000$	B Variable OS, m RFS, m EFS, m Age (OS, m) 60–65 years 66–70 years 71–75 years > 75 years > 80 years ECOG (OS, m) ECOG 0 ECOG 1 ECOG 2 ECOG 3 ECOG 4 CCI (OS, m) CCI 0–1 CCI 2–3 CCI 4–5 CCI 6–7 CCI 8–10 Subtype (OS, m) De novo AML sAML tAML ELN risk (OS, m) Favorable Intermediate	Pallii n 154 3 154 13 23 49 69 33 30 57 46 8 1 68 66 15 3 1 52 76 21 7 57	ative CHT Median 3.9 4.5 3.9 2.5 3.0 4.7 4.0 2.8 8.1 5.4 1.6 3.5 0.9 5.4 3.0 0.6 0.8 1.8 5.6 2.6 0.8 6.7	+/- HMA 95% Cl 2.4-5.3 0.8-8.3 2.4-5.3 2.0-3.0 0.0-6.0 1.8-7.6 2.1-5.9 0.8-4.8 6.1-10.2 4.2-6.7 1.0-2.1 0.0-7.1 - 3.0-4.7 2.2-8.6 0.0-6.2 0.0-1.3 - 1.2-2.5 3.5-7.7 0.0-6.6 0.7-0.9 3.7-9.6	p - - 0.399 <0.001 <0.001	HIV n 58 3 58 - 6 20 32 12 14 21 12 1 1 34 20 4 - - 15 37 5 1 24	A 1st-line Mediar 11.7 4.5 11.2 - 5.6 8.1 11.8 11.4 17.8 2.0 15.7 0.9 11.4 17.6 17.3 - 11.2 12.6 22.2 1.4 20.6	 95% Cl 7.0–16.4 0.8–8.3 6.7–15.6 0.0–37.9 1.9–14.4 3.7–19.9 0–29.9 1.9–21.0 7.5–28.0 1.2–2.9 - 3.3–19.6 1.9–33.3 0.0–42.4 - 5.1–17.2 2.4–22.8 0.0–53.7 - 7.5–33.6 	p - - 0.732 0.005 0.814 0.724 <0.001	Oth n 96 - 96 13 17 29 37 21 16 36 34 46 11 3 1 37 39 16 6 33	er palliativ Median 2.5 - 2.5 1.8 2.6 2.8 1.1 5.0 3.9 1.3 3.5 - 2.6 2.8 1.1 5.0 3.9 1.3 3.5 - 2.6 2.8 1.3 0.6 0.8 3.1 2.2 0.8 3.9 1.8 3.1 2.2 0.8 3.9 1.8 3.1 2.2 0.8 3.9 1.3 3.5 - 2.6 2.8 1.3 0.6 0.8 3.1 2.2 0.8 3.1 2.6 0.8 3.9 1.3 3.5 - 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 1.3 0.6 0.8 3.1 2.2 0.8 3.9 1.3 3.5 0.6 0.8 3.1 2.2 0.8 3.1 2.2 0.8 3.1 2.2 0.8 3.1 2.2 0.8 3.1 2.2 0.8 3.1 2.2 0.8 3.1 2.2 0.8 3.1 2.2 0.8 3.9 1.8 3.1 2.2 0.8 3.9 1.8 3.1 2.2 0.8 3.9 1.8 3.1 2.2 0.8 3.9 1.8 3.1 2.2 0.8 3.9	re CHT 95% CI 1.8–3.2 - 1.8–3.2 2.0–3.0 0.9–2.8 0.8–4.3 1.1–4.4 0.0–2.1 2.9–7.0 1.2–6.7 0.6–2.1 0.0–9.4 - 1.5–3.7 1.6–4.0 0.0–3.6 0.0–1.3 - 1.0–2.6 1.5–4.7 0.0–4.7 0.5–1.1 1.9–6.0	p - - 0.799 <0.001 <0.001 0.192 0.006	BSC n n 46 - 46 9 13 8 16 7 3 18 13 9 2 15 23 5 2 1 15 23 5 2 1 20 16 8 113	Median 1.3 - 1.3 - 1.3 1.0 1.3 0.9 1.6 2.2 3.3 1.6 1.3 0.6 0.4 1.6 1.0 1.9 0.03 1.7 1.3 1.2 1.0 0.2 3.3	95% CI 0.4-2.2 - 0.4-2.2 0.0-2.5 0.0-2.7 0.0-4.5 0.4-2.2 0.0-6.9 0.0-3.6 0.0-2.6 0.0-2.6 0.0-2.6 0.0-3.8 0.0-5.0 - - 0.0-3.8 0.0-2.5 - 1.5-5.1	p - - 0.425 0.425 0.420 0.819 0.543 0.089

A: entire cohort and patients with intensive CHT, B: patients with palliative CHT (HMA and non-HMA) or BSC only.

Note: Significant differences between all categories of each subgroup are highlighted in bold letters.

Abbreviations: months (m), number of patients (n), confidence interval (CI), overall survival (OS), relapse-free survival (RFS), event-free survival (EFS), chemotherapy (CHT), best supportive care (BSC), Eastern Cooperative Oncology group Score (ECOG), Charlson Comorbidity Index (CCI), secondary/therapy-related AML (sAML/tAML), European LeukemiaNet (ELN), hypomethylating agents (HMA), allogeneic hematopoietic stem cell transplantation (allo-HSCT), not reached (n.r.)

* 3 Patients were lost to follow-up and therefore excluded from the subgroup-analyses.

J. Ihlow, S. Gross, N.R. Neuendorff et al.

3. Results

3.1. Entire Cohort - Baseline Characteristics, Therapy and Survival

590 patients aged \geq 60 years were included in this analysis. Baseline characteristics and treatment modalities are shown in Table 1 and Supplementary Fig. 1. Median age at diagnosis was 68 years in the entire cohort (range: 60–90 years). Median follow-up was 55.8 months. 390 patients (66%) underwent IC with curative intent containing cytarabine and anthracycline (7 + 3 or high dose cytarabine and mitoxantrone (HAM)). Of these patients, 42.3% (n = 165) received a second induction cycle, 59% (n = 230) were treated with a high-dose Cytarabine-based (HD Ara-C 1 g/m²) consolidation therapy and 55.3% (n = 216) underwent allo-HSCT.

Of all patients, 10% (n = 58/590) were treated with hypomethylating agents (HMA). The other patients received either PC with low-dose Ara-C (LDAC, n = 51), Hydroxyurea (n = 21), oral Etoposide, Thioguanine, Mercaptopurine (n = 24) or BSC (n = 46). Before January 2008, only 6% of the patients with PC had received LDAC (n = 2/31) and none of the patients had been treated with HMA. Since 2008, 40% of patients with PC were treated with LDAC (n = 49/123) and 47% received HMA (n = 58/123). Enrollment into interventional clinical trials (Supplementary Fig. 1) decreased significantly with age (60–65 years, 34%, 66–70 years: 23% ≥70 years: 5%, ≥80 years: 0%, p < 0.001).

5-year OS and EFS were 18% and 11.5% in the entire cohort. 10-year OS and EFS were 9% and 7%, respectively. Considering the different therapeutic strategies (IC, PC, and BSC), the only modality associated with improved OS in the multivariate analysis was IC followed by allo-HSCT (Table 3). Since this is a retrospective study over a rather long period of time, no consistent algorithm can be described, that led to the allocation of patients to the different treatment modalities. However, a comparison of baseline characteristics within the entire cohort and the different therapeutic subgroups (Tables 1 and 2) suggests that – as expected – age, ECOG performance status, ELN risk group and CCI were major drivers for therapeutic decision. Furthermore, de novo AML was associated with IC, whereas PC was more commonly used in sAML (Table 1).

With regard to baseline characteristics potentially predicting OS, the following findings were made in the entire cohort: ELN risk group and ECOG performance status had an independent prognostic impact OS (Table 3). Additionally, elevated baseline SF values of $\geq 1000 \ \mu g/l$ and a history of myocardial infarction were independent negative predictors of OS (Table 3 and Supplementary Table 1). In contrast, age and comorbidity were not generally maintained as significant prognostic parameters in the multivariate analysis (Table 3, Fig. 2). However, CCI remained significant in patients receiving IC without allo-HSCT, in the entire PC cohort and the non-HMA PC subgroup (Fig. 2B, D, F).

3.2. ECOG Performance Status, Comorbidity, and Age: Impact on Clinical Outcome in Therapeutic Subgroups

In order to gain more insight into the prognostic role of baseline characteristics within the different subgroups with regard to type of therapy, the impact of baseline characteristics on OS was analyzed for each subgroup separately:

3.2.1. Intensive Therapy with or without Allogeneic HSCT

As expected, patients with intensive therapy and particularly those undergoing allo-HSCT were the youngest and fittest in our cohort (Table 1). Allo-HSCT was performed up to an age of 75 years. In 95% of cases, reduced intensity conditioning regimens were applied (n = 203/216). OS was significantly longer in patients who underwent allo-HSCT as compared to patients who did not (Supplementary Fig. 3B). A survival benefit for patients with allo-HSCT was obvious across different age groups (Supplementary Fig. 3G–H). In the multivariate analysis, this allo-HSCT-associated benefit was maintained in the entire cohort

(Table 3) and for patients aged <70 years (p < 0.001, HR 0.2, not shown).

Amongst patients with de novo AML, IC was the most frequent treatment modality (Table 1). In all patients receiving IC, age > 80 years (HR 8.2, 95% CI 1.7–38.8), an intermediate or adverse ELN risk group (HR 3.4, 95% CI 1.1–11.4) and baseline SF > 1000 μ g/l (HR 1.7, 95% CI 1.0–3.0) had an independent negative impact on OS (Fig. 2A).

In the non-transplant subgroup of intensively treated patients, ECOG, CCI and ELN risk group maintained their prognostic value in the multivariate analysis (Fig. 2B).

In the transplant group, an adverse ELN risk was the only parameter that maintained its independent negative prognostic impact on OS, whereas CCI and ECOG did not (Figs. 1E and 2C).

3.2.2. Palliative Chemotherapy

PC comprised therapy with HMA and other cytoreductive drugs (see above). In the entire PC group, median age was 74.5 years. These patients had a higher CCI and a more unfavorable ECOG score than patients treated with IC (Table 1, Supplementary Fig. 1B and C) Notably, 50% of PC patients had sAML (Table 1). Interestingly, a favorable ELN risk score was associated with a higher risk of death in the PC group (HR 3.3), whereas sAML was not (HR 0.6, Fig. 2D, Supplementary Fig. 4B).

Particularly in the non-HMA group, ECOG and CCI were independent risk factors which apparently shaped results in the entire PC group (Fig. 2D–F). Therapy with HMA was associated with a significantly better OS as compared with non-HMA chemotherapy. This was a consistent finding in patients <70 years and \geq 70 years of age (Supplementary Fig. 4G). Comparing the periods of time before and after 2008 (5-Azacytidine was licensed by the EMA in 2008), there was a significant OS difference in favor of the period 2008–2017 (Supplementary Fig. 4H).

3.2.3. Best Supportive Care

Median age of patients with BSC was 71 years. Median OS was inferior to all other groups which was most likely driven by ECOG score and CCI (Tables 1 and 2B). Within this subgroup of patients, no significant prognostic factor could be identified (Table 2B, Fig. 2G).

Table 3

Univariate and multivariate cox regression of prognostic baseline characteristics for OS in 590 older patients with AML.

Variable	Univa	ariate		Multi		
	HR	95% CI	р	HR	95% CI	р
Gender, male	0.99	0.82-1.20	0.919	-	-	-
Age ≥ 70 years	1.72	1.43-2.08	<0.001	1.08	0.65-1.79	0.760
ECOG score > 1	3.81	2.99-4.85	<0.001	3.69	1.86-7.30	<0.001
$CCI \ge 2$	2.04	1.12-3.69	0.019	1.14	0.72-1.80	0.578
Subtype sAML/tAML	1.23	1.07-1.55	0.009	0.83	0.51-1.33	0.438
ELN risk group adverse	2.00	1.61-2.49	<0.001	2.37	1.47-3.81	0.001
Intensive therapy followed by allo - HSCT	0.26	0.21-0.32	<0.001	0.50	0.29-0.86	0.012
Severe infection at initial diagnosis	1.21	0.94-1.56	0.146	-	-	-
$WBC < 1.0 \times 10^9/l$	1.33	0.91-1.94	0.141	-	-	-
$WBC > 100 \times 10^9/l$	1.20	0.87-1.66	0.260	-	-	-
Platelet count $<50 \times 10^9/l$	1.20	0.99-1.46	0.070	1.34	0.86-2.10	0.197
Hb ≤ 10 mg/dl	1.27	0.73-2.21	0.400	-	-	-
$SF > 1000 \ \mu\text{g/l}$	1.69	1.16-2.46	0.006	1.64	1.04-2.57	0.033

Abbreviations: overall survival (OS), hazard ratio (HR), confidence interval (CI), Eastern cooperative oncology group score (ECOG), Charlson Comorbidity Index (CCI), secondary AML (sAML), therapy related AML (tAML), European LeukemiaNet (ELN), allogeneic hematopoietic stem cell transplantation (allo-HSCT), peripheral white blood cell count (WBC), hemoglobin (Hb), serum ferritin (SF).

Significant differences between groups are marked in bold (p < 0.005).

J. Ihlow, S. Gross, N.R. Neuendorff et al.

Journal of Geriatric Oncology xxx (xxxx) xxx

J. Ihlow, S. Gross, N.R. Neuendorff et al.

3.3. Secondary AML and Therapy-Related AML

Distribution of AML subtypes is shown in Supplementary Fig. 1E. As expected, patients with sAML/tAML showed an accumulation of adverse cytogenetic characteristics as compared to patients with de novo AML. Median age with sAML or tAML was 68 years. Of note, 43% of patients with sAML or tAML (n = 129/301) showed at least one adverse cytogenetic or molecular feature (complex karyotype, monosomal karyotype, t(6;9), MLL/11q23, inv3/t(3,3), del (5q)/-5, del (7q)/-7, TP53-mutation or FLT3-ITD/NPM1 wildtype), whereas these adverse prognostic features were only present in 29% (n = 82/281) of patients with de novo AML (p = 0.001).

Patients with sAML were less frequently treated with intensive therapy than patients with de novo AML (59% vs. 74%, p = 0.003). Instead, HMA therapy was applied more frequently in patients with sAML (65%, Table 3).

OS with sAML/tAML was significantly worse than with de novo AML (HR 1.23). This can most likely be explained by an accumulation of adverse cytogenetic features in patients with sAML/tAML. However, in the multivariate analysis, this difference was neither maintained in the entire cohort (Table 3) nor within subgroups (Fig. 2). Interestingly, sAML seemed to fare better in the entire PC subgroup as compared to de novo AML (Fig. 2D). This was apparently caused by the fact that patients with de novo AML treated with PC were in a particular unfavorable general health condition at baseline (de novo AML: ECOG/CCI = 2/2 vs. sAML/t-AML: ECOG/CCI = 1/1, p = 0.022/0.039).

3.4. Baseline Serum Ferritin: An Additional Risk Factor

Median SF was elevated above the normal range in the entire cohort $(974 \,\mu\text{g/l}, \text{ normal range: } 200-300 \,\mu\text{g/l})$ with the highest values in patients receiving PC and BSC (Table 1). Of all patients, 12.5% (n = 74/ $\,$ 590) had elevated baseline SF levels $>1000 \,\mu g/l$. Neither treatment modalities (p = 0.3) nor AML subtypes (p = 0.3) differed significantly between patients with high and low SF levels at baseline. Clinical outcome with highly elevated baseline SF was particularly dismal as compared to lower SF levels (OS 6.8 months vs. 12.8 months, p < 0.001). As previously reported in younger patients [15,22], highly elevated baseline SF was confirmed to be an adverse prognostic factor in this cohort of older adults with AML (Table 3). This was maintained in the multivariate subgroup analyses particularly for patients aged 71–74 years (p =0.001, HR 5.7, not shown) and for the entire subgroup of intensively treated patients (HR 1.7, p = 0.05, Fig. 2A). The negative prognostic impact of baseline SF was independent from other (inflammation-associated) factors such as severe infections (Table 3).

3.5. Referrals of Older AML Patients and Changes in Therapeutic Strategies over Time

In order to analyze changes in referrals and therapeutic strategies over time, our cohort was divided according to three periods: 1) 2000–2005, 2) 2005–2010 and 3) 2010–2017 (Supplementary Fig. 2). There was a significant increase of referrals of older patients treated for AML over time with concurrent improvement of OS. Interestingly, between 2000 and 2017, the percentage of patients who were finally treated with PC rose from 18% to 27%, whereas the percentage with BSC only dropped from 14% to 4%, reflecting changes in the

landscape of AML therapy over time, in particular after introduction of HMA in routine AML management. The percentage of intensively treated patients remained stable throughout the whole period of time (Supplementary Fig. 2).

4. Discussion

This single-center retrospective study provides long-term survival data in a large cohort of older adults with AML aged from 60 to 90 years with a median follow-up of 55.8 months. The patient cohort reported on - in particular patients who have not been treated within clinical trials - represents a subgroup in which data on long-term outcome are scarce. Our study gives detailed insights into clinical characteristics and prognostic parameters of older patients with AML within major therapeutic subgroups including treatment with intensive chemotherapy (with or without allo-HSCT), palliative chemotherapy (with or without HMA) and best supportive care only. We analyzed widely established risk factors such as ECOG score and ELN risk classification [2,4,16,20,28,34] across these subgroups, with an additional focus on chronological age and comorbidity, since their independent prognostic impact is less consistent in the literature [13,14,17-21,35]. Moreover, our study shows that baseline SF and a history of myocardial infarction are also useful as prognostic parameters in older adults treated for AML.

Long-term survival was only observed in intensively treated patients. 5-year OS with IC followed by allo-HSCT was 24% and is consistent with the results from other studies (14% - 27%) [2,10,36–41]. IC followed by allo-HSCT was confirmed as an independent predictor for long-term survival and was frequently used in the entire cohort (29%). The latter is most likely caused by a selection bias (towards a better general health condition) that is seen in large academic medical centers, leading to underrepresentation of frail patients [8]. Our trial enrollment rate (26%) was comparable with data from current literature [2,3,10,36].

Overall, our study confirms widely established patient- and AMLrelated prognostic variables such as ELN risk group, ECOG performance status and CCI [2,4,13,16,20,28,42]. However, their contribution in predicting clinical outcome within the different therapeutic subgroups is very heterogeneous. In our cohort, decisions against intensive chemotherapy (in favor of palliative chemotherapy) were mainly driven by age and comorbidity burden. In contrast, the main selection criterion for BSC (instead of PC) seemed to be ECOG score (Table 1). Furthermore, patients with sAML were more likely to receive HMA.

Interestingly, the impact of age was neither prognostic in the multivariate analysis of the entire cohort nor within particular subgroups, except for patients >80 years undergoing allo-HSCT (Table 3, Fig. 2). In the literature, age is generally accepted as a powerful risk factor in AML [4,16,28,43]. However, the strong prognostic impact of age is particularly apparent in studies that compare patients who are younger than 60 years with older patients treated for AML [4,43]. In contrast, the role of age as an independent risk factor amongst older patients with AML (> 60-65 years) is less clear-cut owing to many other aspects such as performance status, comorbidity and genetic alterations in the leukemia cells that modulate both tolerance of therapy and the susceptibility of leukemia cells to chemotherapy [28,42,44,45]. Thus, the adverse prognostic impact of age may be substantially modified by other patient- or leukemia-specific factors. In fact, in some studies that describe age as an independent risk factor, the genetic ELN risk stratification was not included into the analysis [3]. In other studies (within

Fig. 1. Comorbidity in 590 older patients with AML (univariate analysis). A–I: Association between CCI and OS with regard to type of therapy: Patients receiving palliative chemotherapy or best supportive care only showed higher CCI scores than patients who were eligible for intensive therapy (A). There was an inverse association between CCI and OS in the entire cohort (B) and within the non-transplant group receiving intensive chemotherapy (D). The influence of CCI on OS was not statistically significant within the entire subgroup of patients receiving intensive therapy with or without allo-HSCT (C) and within the subgroup receiving allo-HSCT (E). Amongst patients receiving palliative chemotherapy, CCI had a significant impact on OS (F). This latter effect was mainly driven by patients who were treated with non-HMA chemotherapy (H), whereas the influence of CCI was not significant in the HMA subgroup (G). In patients receiving BSC only, CCI did not impact OS (I). J–N: CCI and OS with respect to age: Median CCI was comparable in all age groups except for patients >80 years who had the highest CCI score (J). In the univariate analysis, CCI had a significant impact on OS across all age groups (K–N). Note: "outlyers, "extreme outlyers, significant patient impact do S. Abbever (CI), overall survival (OS), number of patients (n), hematopoietic stem cell-transplantation (HSCT), hypomethylating agents (HMA).

J. Ihlow, S. Gross, N.R. Neuendorff et al.

ELN adverse SF > 1000 µg/l

Journal of Geriatric Oncology xxx (xxxx) xxx В Α Intensive Chemotherapy without allogeneic HSCT Intensive Chemotherapy + / - allogeneic HSCT Multivariate risk profile: Age > 80 years (HR = 8.2 [1.7 - 38.8], p = 0.008) Multivariate risk profile age > 65 years age > 65 years ECOG > 0 (HR = 1.6 [1.1 - 2.3], p = 0.014) age > 70 years age > 70 years ELN diate / adverse (HR = 3.4 [1.1 - 11.4], p = 0.038) CCI > 5 (HR = 50.7 [5.3 - 60.9], p < 0.001) age > 75 years age > 75 years age > 80 years ECOG > 0 ECOG > 1 ECOG > 2 ECOG > 3* age > 75 years SF > 1000 µg/l (HR = 1.7 [1.0 - 3.0], p = 0.050) ELN adverse (HR 2.3 [1.5 - 3.5], p < 0.001) inde age > 80 years ECOG > 0 compared to ECOG > 1 ECOG > 2 ECOG > 3* factor (CCI > 1 CCI > 1 **Risk factor** CCI > 3 CCI > 3 CCI > 5* CCI > 5* **Risk** sAML sAML tAML tAML ELN intermediate ELN intermediate ELN adverse ELN adverse SF > 1000 µg/l SF > 1000 µg/l 17 21 25 29 33 37 49 11 13 15 -3 5 13 41 45 -1 17 9 1 Hazard-Ratio of Death Hazard-Ratio of Death D С Intensive Chemotherapy with allogeneic HSCT Palliative Chemotherapy + / - HMA Multivariate risk profile: Multivariate risk profile age > 65 years age > 65 years ELN favorable (HR = 3.3 [1.7 - 10], p = 0.001) ELN adverse (HR = 2.2 [1.5 - 3.3], p < 0.001) age > 70 years sAML (HR = 0.6 [0.4 - 0.9], p = 0.025) age > 70 years age > 75 years ECOG > 0 age > 80 years index ECOG > 0 ECOG > 1 compared to index ECOG > 1 ECOG > 2 2 ECOG > 2 compared CCI > 1 ECOG > 3* CCI > 3 CCI>1 CCI > 3 CCI > 5* factor **Risk factor** CCI > 5* sAML CCI > 7* Risk tAML sAML tAML ELN inte odiato ELN intermediate ELN adverse ELN adverse SF > 1000 µg/l SF > 1000 µg/l 10 13 16 19 3 9 11 13 5 Hazard-Ratio of Death Hazard-Ratio of Death F Ε Therapy with HMA Other Palliative Chemotherapy Multivariate risk profile Multivariate risk profile: age > 65 years age > 65 years ELN favorable (HR = 2.5 [1.0 - 5.0], p = 0.053) ECOG > 1 (HR = 2.0 [1.2 - 3.7], p = 0.013) age > 70 years age > 70 years CCI > 5 (HR = 6.0 [1.4 - 26.4], p = 0.018) age > 75 years age > 75 years age > 80 years age > 80 years ndex ECOG > 0 ECOG > 0 ECOG > 1 compared to ECOG > 1 compared to ECOG > 2 ECOG > 2 CCI > 1 ECOG > 3 CCI > 3 CCI > 1factor CCI > 5 factor (CCI > 3 CCI > 7* sAML Risk 1 sAML tAML Risk tAML ELN intermediate ELN inte diate ELN adverse ELN adverse SF > 1000 µg/l SF > 1000 µg/l 25 28 22 10 13 16 19 Hazard-Ratio of Death 31 5 13 17 21 25 29 33 37 41 -3 9 Hazard-Ratio of Death G Best Supportive Care Only Multivariate risk profile: age > 65 years age > 70 years No specific risk profile detectable age > 75 years ige > 80 years index ECOG > 0 ECOG > 1 compared to i ECOG > 2 ECOG > 3* CCI > 1 CCI > 3 factor CCI > 5* CCI > 7 Risk sAML tAML ELN intermediate

13

11

5 7 Hazard-Ratio of Death

J. Ihlow, S. Gross, N.R. Neuendorff et al.

the subgroup of older patients with AML > 60 years), age also lost its multivariate significance [46,47] or only maintained statistically significant in very old patients, respectively [48]. Regarding our own data in the context of the literature, we assume that the relative weight of age for prognostication can easily be overridden by other factors, thus explaining a certain degree of heterogeneity in retrospective studies.

Likewise, our study suggests that CCI as a prognostic factor should be used with caution, since analyses in therapeutic subgroups did not show a consistent independent impact of CCI, except for patients receiving IC without allo-HSCT and non-HMA PC (Fig. 2). In general, CCI records less comorbidities than other scores and functional abilities may substantially modulate comorbidity [49,50]. Despite these disadvantages, CCI belongs to the most commonly used indices for comorbidity in the literature. However, the independent prognostic value of comorbidity is controversial, since there are studies which do not show an independent correlation between CCI and outcome [14,20,21,35]. This discrepancy may be explained by several factors: an association between CCI and age, a transient nature of leukemia-associated comorbidities measured at baseline (due to improvement under treatment) and a strong association between CCI and type of therapy being administered.

In contrast to age and CCI, ELN risk group and ECOG status had a more consistent prognostic impact in our study. ELN risk was strongly prognostic in the entire cohort and particularly within the intensively treated subgroup (Table 3, Fig. 2A-C), which is in line with the present literature [16,28,42,44]. ECOG also had an independent prognostic impact in the entire cohort and within particular subgroups (Table 3, Fig. 2). However, this was lost in patients undergoing HSCT, since this subgroup is usually highly selected towards a more favorable general health condition. Moreover, the therapeutic modality of HSCT has an independent influence on OS itself. In the PC group receiving HMA, the loss of multivariate significance of ECOG is most likely caused by sample size (Fig. 2E). In previous studies, ECOG score has been a strong predictor for OS irrespective of age [4,20]. However, assessing performance status is afflicted with a high degree of subjectivity and is not equivalent to the functional status that reflects "biological age" or the level of autonomy achieved by individuals in daily life [20]. In fact, further age-related components such as functional capacities or cognitive impairment might have influenced OS in our cohort [49,51,52]. Activities of daily living [50,53], short physical performance battery (measuring physical function) [54], or Mini-Mental State Exam (assessing cognitive function) [55,56] are only a few examples of diagnostic tools that have been validated to guantify the functional status. Therefore, a routine comprehensive geriatric assessment at baseline would be helpful as an additional component of initial treatment decision and might substantially improve prognostication [49,51,52].

Besides well-established risk factors, the independent negative prognostic impact of high SF at baseline, that has recently been described in intensively treated patients with AML by our group and others [15,22–24] was confirmed in this study. Thus, we propose an implementation of baseline SF into the assessment of older patients with AML, particularly in the context of intensive therapy (Table 3, Fig. 2A). Furthermore, a history of myocardial infarction was found to be a factor of prognostic relevance in our cohort (Supplementary Table 1) and it is

Journal of Geriatric Oncology xxx (xxxx) xxx

yet to be determined to what extent this finding might be linked to inflammation-related clonal hematopoiesis [57].

Since our study extents over a period of nearly two decades, we were able to provide an analysis of clinical outcome within different time periods. In the subgroup of patients receiving PC, the increase of survival rates over time (2000-2007 vs. 2008-2017, Supplementary Figs. 2 and 4H) is an interesting observation that is likely caused by the improvement of supportive care in AML therapy (e.g. introduction of modern systemic antimycotics) [2,58,59], but also by the use of HMA in Europe since 2008 [60-62]. Correspondingly, an OS benefit with HMA was found in patients <70 and >70 years of age as compared to non-HMA chemotherapy (Supplementary Fig. 3G). Obviously, the advent of HMA therapy was accompanied by an increase of referrals of older patients with AML who were not eligible for intensive chemotherapy. This finding is also reflected by an increase of median age over time (Supplementary Fig. 2). The improvement of OS (as compared to non-HMA chemotherapy) is in line with the literature [60,63]. In a prospective randomized trial (AZA001) that compared 5-Azacytidine to conventional intensive and non-intensive chemotherapy regimens in older patients with AML, 5-Azacytidine was superior to conventional chemotherapy, particularly in the subgroup of patients with adverse genetic features according to ELN [63,64]. In line with these results, we observed a lower risk of death for sAML in the entire PC subgroup (Fig. 2D). However, this advantage of patients with sAML and intermediate/adverse ELN risk observed in the PC subgroup (Fig. 2D-F) can also be explained by a particular unfavorable health condition of patients with de novo AML and favorable ELN risk, who were treated with PC and not with IC instead. In our cohort, the latter aspect is supported by higher ECOG and CCI scores in patients with de novo AML as compared to patients with sAML or tAML. This example shows that standard risk factors must be interpreted with caution in the context of a palliative treatment strategy.

The major limitation of our study is caused by its retrospective nature. Although our analysis was performed in a comparatively large cohort of patients, some subgroups tend to be rather small, particularly in the setting of palliative treatment. Obviously, this restrains statistical power which is reflected by the broad width of confidence intervals in these subgroups. Furthermore, a selection bias towards younger age, lower ECOG performance status and lower CCI scores that is observed in large academic referral centers might have improved long-term outcome in our cohort.

The heterogeneity of health conditions at baseline and the increasing number of therapeutic options emphasize the need for a more accurate prediction of long-term survival in older adults with AML [14,49,50]. A few, partly web-based algorithms have already been proposed [65]. Our current study shows that ECOG performance status, cytogenetic/ molecular risk, SF and (to a lesser extent) comorbidity burden are more reliable in informing therapeutic decisions for or against intensive therapy than chronological age. However, in PC and BSC, these established parameters for prognostication are less consistent.

For the future, an algorithm for therapeutic decision making that is based on large data sets, including clinical and molecular parameters, geriatric assessment and new targeted approaches such as FLT3-, IDH1/IDH2- and BCL2-inhibitors will probably help to improve long-

Fig. 2. Detailed risk factor profiles within subgroups of older patients treated for AML according to type of therapy (both univariate and multivariate analysis). Forest-Plots were grouped by type of treatment. Univariate cox regression was performed for each parameter. Index parameters were age < 65 years, ECOG 0, CCI 0, de novo AML and favorable ELN risk. Unfavorable variables that were significant in the univariate analysis are highlighted in orange boxes. Favorable variables are highlighted in green boxes. Parameters with multivariate significance are indicated in red boxes at the top right corner of each figure, together with 95% confidence intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) A–C: In patients receiving intensive therapy (n = 390), ELN-risk was the most consistent driver of a dismal prognosis (A–C). Elevated baseline SF was an adverse prognostic parameter in the entire cohort of intensively treated patients (A). Within the subgroups IC without allo-HSCT and IC with allo-HSCT, a tendency towards inferior OS was observed in patients where less consistent. G: In patients receiving BSC only (n = 46), no significant independent risk factors were found. Note: * 95% CI could not be provided here due to sample sizes (n = 1–2). Abbreviations: Hazard Ratio (HR), Eastern Cooperative Oncology Group (ECOG), Charlson-Comorbidity Index (CCI), European Leukemia Net (ELN), secondary AML (sAML), therapy-related AML (tAML), serum ferritin (SF), hematopoietic stem cell transplantation (HSCT), hypomethylating agents (HMA).

J. Ihlow, S. Gross, N.R. Neuendorff et al.

term survival and unfold the potential of less toxic therapies in older patients treated for AML [66–68].

Contributions

Conceptualization: Ihlow J, Westermann J. Patient recruitment: Westermann J, Bullinger L, Flörcken A, Schwarz, M, Neuendorff NR, Singh A, Blau IW. Diagnostics (cytology, pathology, flow cytometry, cytogenetics, molecular genetics): Anagnostopoulos I, Turkmen S, Burmeister T, Westermann J. Data curation: Ihlow J, Gross S, Herneth A, Busack L. Statistical analysis: Ihlow J, Westermann J. Supervision: Westermann J, Bullinger L. Writing: Ihlow J, Westermann J, Neuendorff NR. Critical revision: all authors.

Declaration of Competing Interest

The authors declare that there is no conflict of interest with respect to this work.

Acknowledgement

We thank Margrit Stodder for her dedicated administrative support in this project.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. org/10.1016/j.jgo.2020.11.001.

References

- Nagel G, Weber D, Fromm E, et al. Epidemiological, genetic, and clinical characterization by age of newly diagnosed acute myeloid leukemia based on an academic population-based registry study (AMLSG BiO). Ann Hematol 2017;96(12): 1993–2003.
- [2] Oran B, Weisdorf DJ. Survival for older patients with acute myeloid leukemia: a population-based study. Haematologica 2012;97(12):1916–24.
- [3] Juliusson G, Antunovic P, Derolf Å, et al. Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish acute Leukemia registry. Blood 2009;113(18):4179–87.
- [4] Appelbaum FR, Gundacker H, Head DR, et al. Age and acute myeloid leukemia. Blood 2006;107(9):3481–5.
- [5] Grimwade D, Walker H, Harrison G, et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood 2001;98(5):1312–20.
- [6] Perl AE. The role of targeted therapy in the management of patients with AML. Blood Adv 2017;1(24):2281–94.
- [7] Ossenkoppele G, Löwenberg B. How I treat the older patient with acute myeloid leukemia. Blood 2015;125(5):767–74.
- [8] Hamaker ME, Stauder R, van Munster BC. Exclusion of older patients from ongoing clinical trials for hematological malignancies: an evaluation of the National Institutes of Health clinical trial registry. Oncologist 2014;19(10):1069–75.
- [9] Finn L, Dalovisio A, Foran J. Older patients with acute myeloid Leukemia: treatment challenges and future directions. Ochsner J 2017;17(4):398–404.
- [10] Dinmohamed AG, Visser O, van Norden Y, et al. Treatment, trial participation and survival in adult acute myeloid leukemia: a population-based study in the Netherlands, 1989–2012. Leukemia 2015;30:24.
- [11] Juliusson G, Lazarevic V, Hörstedt A-S, Hagberg O, Höglund M. Swedish acute Leukemia registry G. acute myeloid leukemia in the real world: why population-based registries are needed. Blood 2012;119(17):3890–9.
- [12] Djunic I, Virijevic M, Novkovic A, et al. Comorbidity as a risk factor for overall survival and decision criteria for intensity of chemotherapy in elderly patients with acute myeloid leukemia. Med Oncol 2012;29(2):1077–81.
- [13] Etienne A, Esterni B, Charbonnier A, et al. Comorbidity is an independent predictor of complete remission in elderly patients receiving induction chemotherapy for acute myeloid leukemia. Cancer 2007;109(7):1376–83.
- [14] Tawfik B, Pardee TS, Isom S, et al. Comorbidity, age, and mortality among adults treated intensively for acute myeloid leukemia (AML). J Geriatr Oncol 2016;7(1): 24–31.
- [15] Ihlow J, Gross S, Sick A, et al. AML: high serum ferritin at initial diagnosis has a negative impact on long-term survival. Leuk Lymphoma 2018:1–9.
- [16] Liersch R, Müller-Tidow C, Berdel WE, Krug U. Prognostic factors for acute myeloid leukaemia in adults – biological significance and clinical use. Br J Haematol 2014; 165(1):17–38.

- [17] Granfeldt Østgård LS, Medeiros BC, Sengeløv H, et al. Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: a national population-based Cohort study. J Clin Oncol 2015;1;33(31):3641–9.
- [18] Collinge E, Loron S, Larcher MV, et al. Elderly patients (age 70 years or older) with secondary acute myeloid Leukemia or acute myeloid Leukemia developed concurrently to another malignant disease. Clin Lymphoma Myeloma Leuk 2018;18(5): e211–8.
- [19] Hulegårdh E, Nilsson C, Lazarevic V, et al. Characterization and prognostic features of secondary acute myeloid leukemia in a population-based setting: A report from the Swedish Acute Leukemia Registry. Am J Hematol 2015;90(3):208–14.
- [20] Rao AV. Fitness in the elderly: how to make decisions regarding acute myeloid leukemia induction. Hematology Am Soc Hematol Educ Program 2016;2016(1): 339–47.
- [21] Østgård LSG, Nørgaard JM, Sengeløv H, et al. Comorbidity and performance status in acute myeloid leukemia patients: a nation-wide population-based cohort study. Leukemia 2015;29(3):548–55.
- [22] Lebon D, Vergez F, Bertoli S, et al. Hyperferritinemia at diagnosis predicts relapse and overall survival in younger AML patients with intermediate-risk cytogenetics. Leuk Res 2015;39(8):818–21.
- [23] Jain P, Casteel K, Allen CE, et al. Elevated ferritin predicts for inferior survival in patients with acute Leukemia and may be an early marker of a underlying systemic pathologic inflammation. Blood 2016;128(22):2791.
- [24] Tachibana T, Andou T, Tanaka M, et al. Clinical significance of serum ferritin at diagnosis in patients with acute myeloid Leukemia: a YACHT Multicenter retrospective study. Clin Lymphoma Myeloma Leuk 2018;18(6):415–21.
- [25] Oken MM, Creech RH, Tormey DC, et al. Toxicity and response criteria of the eastern cooperative oncology group. Am J Clin Oncol 1982;5(6):649–56.
- [26] Charlson MEPP, Ales KL, et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40(5):373–83.
- [27] Döhner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010;115(3):453–74.
- [28] Döhner H, Estey E, Grimwade D, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017;129(4): 424–47.
- [29] Koreth J, Antin JH. Iron overload in hematologic malignancies and outcome of allogeneic hematopoietic stem cell transplantation. Haematologica 2010;95(3):364–6.
- [30] Kikuchi S, Kobune M, Iyama S, et al. Prognostic significance of serum ferritin level at diagnosis in myelodysplastic syndrome. Int J Hematol 2012;95(5):527–34.
- [31] Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127(20): 2391–405.
- [32] Schemper M, Smith TL. A note on quantifying follow-up in studies of failure time. Control Clin Trials.17(4):343–346.
- [33] Thissen D, Steinberg L, Kuang D. Quick and easy implementation of the Benjamini-Hochberg procedure for controlling the false positive rate in multiple comparisons. J Educ Behav Stat 2002;27(1):77–83.
- [34] Mrózek K, Heinonen K, Lawrence D, et al. Adult patients with De novo acute myeloid Leukemia and t(9, 11)(p22; q23) have a superior outcome to patients with other translocations involving band 11q23: a Cancer and Leukemia group B study. Blood 1997;90(11):4532–8.
- [35] Savic A, Kvrgic V, Rajic N, et al. The hematopoietic cell transplantation comorbidity index is a predictor of early death and survival in adult acute myeloid leukemia patients. Leuk Res 2012;36(4):479–82.
- [36] Kalin B, Pijnappel EN, van Gelder M, et al. Intensive treatment and trial participation in elderly acute myeloid leukemia patients: a population-based analysis in the Netherlands. Cancer Epidemiol 2018;57:90–6.
- [37] von dem Borne PA, de Wreede LC, Halkes CJM, Marijt WAF, Falkenburg JHF, Veelken H. Effectivity of a strategy in elderly AML patients to reach allogeneic stem cell transplantation using intensive chemotherapy: long-term survival is dependent on complete remission after first induction therapy. Leuk Res 2016;46:45–50.
- [38] Lim Z, Brand R, Martino R, et al. Allogeneic hematopoietic stem-cell transplantation for patients 50 years or older with Myelodysplastic syndromes or secondary acute myeloid Leukemia. J Clin Oncol 2010;28(3):405–11.
- [39] Colovic M, Colovic N, Radojkovic M, et al. Induction chemotherapy versus palliative treatment for acute myeloid leukemia in a consecutive cohort of elderly patients. Ann Hematol 2012;91(9):1363–70.
- [40] Bories P, Bertoli S, Bérard E, et al. Intensive chemotherapy, azacitidine, or supportive care in older acute myeloid leukemia patients: an analysis from a regional healthcare network. Am J Hematol 2014;89(12):E244–52.
- [41] Löwenberg B, Zittoun R, Kerkhofs H, et al. On the value of intensive remissioninduction chemotherapy in elderly patients of 65+ years with acute myeloid leukemia: a randomized phase III study of the European Organization for Research and Treatment of Cancer Leukemia group. J Clin Oncol 1989;7(9):1268–74.
- [42] Mrózek K, Marcucci G, Nicolet D, et al. Prognostic significance of the European LeukemiaNet standardized system for reporting cytogenetic and molecular alterations in adults with acute myeloid Leukemia. J Clin Oncol 2012;30(36):4515–23.
- [43] Büchner T, Berdel WE, Haferlach C, et al. Age-related risk profile and chemotherapy dose response in acute myeloid Leukemia: a study by the German acute myeloid Leukemia cooperative group. J Clin Oncol 2009;27(1):61–9.
- [44] Farag SS, Archer KJ, Mrózek K, et al. Pretreatment cytogenetics add to other prognostic factors predicting complete remission and long-term outcome in patients 60 years of age or older with acute myeloid leukemia: results from Cancer and Leukemia group B 8461. Blood 2006;108(1):63–73.

Journal of Geriatric Oncology xxx (xxxx) xxx

J. Ihlow, S. Gross, N.R. Neuendorff et al.

- [45] Fröhling S, Schlenk RF, Kayser S, et al. Cytogenetics and age are major determinants of outcome in intensively treated acute myeloid leukemia patients older than 60 years: results from AMLSG trial AML HD98-B. Blood 2006;108(10):3280–8.
- [46] van der Helm LH, Scheepers ERM, Veeger NJGM, et al. Azacitidine might be beneficial in a subgroup of older AML patients compared to intensive chemotherapy: a single Centre retrospective study of 227 consecutive patients. J Hematol Oncol 2013;6 (1):29.
- [47] Wass M, Hitz F, Schaffrath J, Müller-Tidow C, Müller LP. Value of different comorbidity indices for predicting outcome in patients with acute myeloid Leukemia. PLoS One 2016;11(10):e0164587.
- [48] Ma E, Bonthapally V, Chawla A, et al. An evaluation of treatment patterns and outcomes in elderly patients newly diagnosed with acute myeloid leukemia: a retrospective analysis of electronic medical records from US community oncology practices. Clin Lymphoma Myeloma Leuk 2016;16(11):625–36 (e623).
- [49] Klepin HD, Geiger AM, Tooze JA, et al. Geriatric assessment predicts survival for older adults receiving induction chemotherapy for acute myelogenous leukemia. Blood 2013;121(21):4287–94.
- [50] Deschler B, Ihorst G, Platzbecker U, et al. Parameters detected by geriatric and quality of life assessment in 195 older patients with myelodysplastic syndromes and acute myeloid leukemia are highly predictive for outcome. Haematologica 2013;98 (2):208.
- [51] Almeida AM, Ramos F. Acute myeloid leukemia in the older adults. Leukemia Res Rep 2016;6:1–7.
- [52] Loh KP, Klepin HD. Geriatric assessment in older patients with acute myeloid Leukemia. Cancers (Basel) 2018;10(7):225.
- [53] Mahoney FIBD. Functional evaluation: the Barthel index. Md State Med J 1965;14: 61–5.
- [54] Volpato S, Cavalieri M, Sioulis F, et al. Predictive value of the short physical performance battery following hospitalization in older patients. J Gerontol A Biol Sci Med Sci 2011;66(1):89–96.
- [55] Bland RC, Newman SC. Mild dementia or cognitive impairment: the modified minimental state examination (3MS) as a screen for dementia. Can J Psychiatry 2001;46 (6):506–10.
- [56] Arsène O, Lassaunière J-M. Evaluation of cognitive disorders and screening of delirium in cancer patients receiving morphine. Comparison of the use of the Elementary Test of Concentration, Orientation and Memory (TELECOM)and of the Mini-Mental State Examination (MMSE). Presse Médicale (Paris, France: 1983) 2001;29: 2207–12.

Journal of Geriatric Oncology xxx (xxxx) xxx

- [57] Jaiswal S, Libby P. Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nat Rev Cardiol 2020;17(3):137–44.
- [58] European Conference on Infections in Leukaemia ajvotEGfB, Marrow Transplantation tEOfR, Treatment of Cancer tIHS, et al. European guidelines for primary antifungal prophylaxis in adult haematology patients: summary of the updated recommendations from the European Conference on Infections in Leukaemia. J Antimicrob Chemother 2018;73(12):3221–30.
- [59] Showel MM, Levis M. Advances in treating acute myeloid leukemia. F1000prime Rep 2014;6:96.
- [60] Fenaux P, Mufti GJ, Hellström-Lindberg E, et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid Leukemia. J Clin Oncol 2010;28(4):562–9.
- [61] da Thomas X, Wiezbowska A. Results from a randomized phase III trial of decitabine versus supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed AML. J Clin Oncol 2011;29:A6504.
- [62] Kantarjian HM, Thomas XG, Dmoszynska A, et al. Multicenter, randomized, openlabel, phase III trial of Decitabine versus patient choice, with physician advice, of either supportive care or low-dose Cytarabine for the treatment of older patients with newly diagnosed acute myeloid Leukemia. J Clin Oncol 2012;30(21):2670–7.
- [63] Dombret H, Seymour JF, Butrym A, et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood 2015;126(3):291–9.
- [64] Döhner H, Dolnik A, Tang L, et al. Cytogenetics and gene mutations influence survival in older patients with acute myeloid leukemia treated with azacitidine or conventional care. Leukemia 2018;32(12):2546–57.
- [65] Krug U, Röllig C, Koschmieder A, et al. Complete remission and early death after intensive chemotherapy in patients aged 60 years or older with acute myeloid leukaemia: a web-based application for prediction of outcomes. Lancet 2010;376(9757): 2000–8.
- [66] Bohl SR, Bullinger L, Rücker FG. New targeted agents in acute myeloid Leukemia: new Hope on the rise. Int J Mol Sci 2019;20(8):1983.
- [67] Bullinger L, Döhner K, Döhner H. Genomics of acute myeloid Leukemia diagnosis and pathways. J Clin Oncol 2017;35(9):934–46.
- [68] Pollyea DA, Stevens BM, Jones CL, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat Med 2018;24(12):1859–66.